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The system described in this paper applies Hidden Markov technology both to the
task of recognizing the cursive legal amount on personal checks and the isolated
(numeric) courtesy amount. Throughout the paper, our primary goal is to present
methods that will allow the engineer to gain maximum leverage from a limited
amount of training data.

1 Introduction

In this paper we describe the main components of a bank check amount recog-
nition system prototype developed at the IBM Almaden Research Center. The
goal of the system is to enhance the performance of a commercially available
check recognition system by performing recognition not only on the isolated
(numeric) courtesy amount but also on the cursive handwritten legal amount

that appears on standard US personal checks. In addition to the core hand-
writing recognition task, such a system presents an additional challenge, the
reliable segmentation of the image into recognizable units.

Section 1 presents the principal preprocessing steps including deskewing,
zone �nding, and feature extraction. Section 2 describes the combined segmen-
tation and recognition module, which is a �nite state grammar driven Hidden
Markov Model (HMM) performing Viterbi segmentation and recognition, and
introduces a simple measure of segmentation correctness that is a good pre-
dictor of overall recognition correctness. Results are presented in Section 3.

2 Preprocessing

The input bilevel TIFF images having the dimensions of the standard US
personal check (6 by 2.7 inches, 1440 by 648 pixels at 240 dpi) are captured
by a high speed/high volume commercial check processor. As in many other
domains, e.g. in postal and in forms processing applications, once the infras-
tructure for tapping into a live data stream is established, raw images are no
longer a scarce resource. The most serious bottleneck for statistical methods
in such cases is the lack of ground truth data.



For example, fully automatic training of a skew estimator would require
an independent source of skew angle: either a perfect automatic deskewer that
is already available (in which case the point of training a new one is moot)
or, more realistically, a human using a protractor. Since manual estimation of
skew angle is rather labor-intensive, we could only gather a small seed set of
skew-truthed images. While the skew estimator that we debugged and re�ned
starting with this seed set uses fairly standard methods (a variant of the Postl
method 1 enhanced by calculations based on beginning- and endpoints of hori-
zontal black pixel runs), the bootstrap methodology itself is worth describing,
as it was used throughout the development of the system.

Stage 0 is the manual creation of a seed set, and the development
of a working prototype. In stage i, a larger current set is generated
using the stage i�1 module and verifying its output both by manual
spot-checking and by passing it to subsequent modules. Systematic
errors are corrected in the current set, and the stage i module is
trained/debugged using this set.

Errors in skew detection were often detectable as statistical anomalies (outliers)
after feature extraction { in a system of pipelined modules, errors of early
modules that do not show up as statistical anomalies later in the pipeline tend
to be irrelevant.

The second module of our pipeline is the zone �nder, which deploys the
same algorithm 2 with di�erent settings for the legal and the courtesy zones.
The legal zone is found chie
y on the basis of the preprinted legal and pay to
lines on the check, which are generally detectable as peaks in the row projec-
tions along the skew angle. The courtesy zone can be detected from the valleys
(lack of black pixels) in the row projections. Starting from a seed set of a few
dozen images, the stage 1 zone �nder was developed over several hundred, and
the stage 2 zone �nder over several thousand images.

The third module, feature extraction, simulates the temporal progression
found naturally in speech and dynamic handwriting data by spatial progres-
sion along the x axis. A sliding window of height h, width w, and slant k is
used to sample the image with stepsize s. In most experiments, the height
of the zone is normalized to 24, 12, or 6, by means of subsampling. In linear
subsampling, every c horizontal lines are replaced by a single horizontal line
which has a black pixel wherever any of the original lines had black. In non-
linear subsampling, c increases with the distance from the regions of greatest
interest, so that descenders and ascenders get squeezed into fewer lines than
strokes within the central region. In either case, blackness-preserving sub-
sampling can be replaced by computing an average gray value. The result is



a vector of h=c dimensions providing a crude grayscale image of the original
window. Currently width is 16 or 8, and the stepsize is 8 or 4, so that every
point appears in exactly two halfway overlapping windows. To further reduce
the dimensionality for the HMM stages (as well as for other algorithms), prin-
cipal component analysis was performed. Using the IBM Hawthorne on-line
recognition system 3 we projected the feature vectors onto the space spanned
by the eigenvectors corresponding to the d largest eigenvalues of the overall
covariance matrix. In most experiments, d is between 8 and 32.

3 Segmentation and recognition

In traditional OCR systems segmentation and recognition are performed by
two separate modules. The segmenter analyzes the image using connected
components and other heuristics, and passes the coordinates of the bounding
boxes to the recognizer. Typically, several segmentation alternatives are pro-
posed by the segmenter, and the recognizer acts in part as a postprocessor that
rejects segmentation hypotheses that contain unrecognizable (or recognizably
wrong) image segments. In HMM-based systems the segmentation and the
recognition are performed in parallel, in a Viterbi search that takes into ac-
count not only the segmentation alternatives and their recognition scores, but
also the combinatorial restrictions characteristic of the domain sublanguage.
Of the three systems A,B,C voted here, system C is a traditional handprint
digit recognizer enhanced by special symbols (such as the $ sign and the \c"
(century) sign for two tightly written zeros) and heuristics speci�c to the cour-
tesy amount domain. System A is the HMM legal amount recognizer 4, and
system B is a courtesy amount recognizer also employing HMM technology.

In our experience, the overall success rate of the system can be expressed
as a product of two factors: the success rate of the segmenter and the success
rate of the recognizer. More formally, given an unsegmented image I such
as the courtesy or the legal �eld, let us denote the portion falling between x
coordinates s and s0 by I(s; s0). Assume correct segmentation s0; s1; :::; sn, and
correct labels li = L(I(si�1; si)) for i = 1; :::; n. If the segmenter returns the
segmentation t0; t1; :::; tm with probability P (t0; t1; :::; tmjI) and the recognizer
returns the label r with probability Q(rjI(s; s0)), the probability of correct
recognition is
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m denotes the number of segments returned by the segmenter and the integral



is taken over all segmentation hypotheses with m segments. If the recognizer
performs no segmentation (i.e. it never returns a recognition hypothesis with
zero or with more than one segment in the output) and the e�ects of post-
processing are not counted here, the only term in the series that will actually
contribute to the probability of correct recognition is the one for n = m. In
that term, the probabilities Q(lijI(ti�1; ti) fall o� rapidly if ti�1 and ti are far
from si�1 and si respectively, so the only volume of n-space that we need to
consider in evaluating the integral is a small n-cube given by points t0; t1; :::; tn
satisfying jti�sij � R for all 0 � i � n. The maximum r of jti�sij is therefore
a good measure of error for any given segmentation t0; t1; :::; tm relative to the
the ground truth s0; s1; :::; sn.

It is well known that heuristic algorithms (e.g. searching for peaks and val-
leys) for character level segmentation of cursive writing are not reliable enough
for statistical pattern matching. What is perhaps more surprising is that seg-
menting cursive writing at the word level already poses serious di�culties for
such heuristic segmenters. To get a better sense of the overall di�culty of the
problem, we computed r for a large test set, and plotted what percentage of
the images that have r below a tolerance of 4,8,... pixels.
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Figure 1: Segmentation error as a function of tolerance

As Fig. 1 shows, human segmenters compared to \ground truth" provided
by other human segmenters will get about 50% of the images correct for very
narrow tolerance (r � 4), but their results are consistent with one another
for over 90% of the cases if we tolerate 16 pixels error (1.7 mm). Segmenters
based on the usual heuristics employing connected components and vertical
projection pro�les will get no more than 4% of the images correct within r � 32
pixels (3.4 mm, comparable to average character width in our sample). This
number is so low because the task of �nding the left edge of the �rst content
word and the right edge of the last content word requires a rudimentary ability



to distinguish content words such as \�fteen" from function words like \and" or
\cents". The ability of performing segmentation and recognition in parallel is
what distinguishes HMM systems such as System A, which is over 55% correct
within r � 32 pixels, from more traditional heuristics-based systems.

Legal �eld images contain a great deal of noise. In addition to the hand-
written content and function words, checks will contain non-numeric written
material, such as \&" or the horizontal line used to �ll spaces, preprinted
material, such as the word Dollars and portions of the text Pay to the

order of hanging down from the line above. They also contain edge noise,
partly preserved from the preprinted box that surrounds the body of the check,
and partly created by the scanning process itself. In the grammar describing
the sublanguage of the check domain, the start symbol is rewritten as Enoise
Lnoise Body Lnoise (fr) LnoiseDollars Lnoise Enoise { only the Body refers
to material with actual numerical content that we wish to recognize.

To bootstrap word-level truthing, �rst a seed set of two thousand images
were manually segmented from beginning to end, and an HMM recognizer was
trained. In stage 1, we used the stage 0 HMM to segment the images and
select only the body. This way, the average length of the image to be hand-
segmented was reduced by two-thirds, and valuable human resources no longer
had to spent on hand-segmenting irrelevant material. The stage 1 HMM,
trained on several thousand images, was applied in a similar fashion in stage
2, when slant-estimation and correction was �rst applied. In earlier stages,
estimation of the slant would have been problematic, because only the content
words present a consistent slant pro�le.

4 Results

Figure 2 shows the error rate (plotted on the y axis) as a function of reject rate
(plotted on the x axis) for system C in standalone mode and in combination
with A or B. The raw character error rate of system C is over 9.7%, so the
whole courtesy �eld, which has on the average 4.12 content characters (plus
the decimal point) is not expected to be correct in more than 60% of the cases.
By aggressively rejecting 76% of the input checks, those where the recognizer
produces less than full con�dence output, system C can be made to perform
at a 2.56% �eld error rate. By voting with system B, which has a 25.9% raw
character error rate, the same 2.56% �eld error can be accomplished at a 59%
reject rate i.e. we can nearly double the number of accepts.
As can be seen from Figure 2, the error-reject curve for A+C lies signi�cantly
below the C curve. At 50% rejection, system C had 4.18% error, while the
combined system has 2.75%, less than two-thirds of the original error. To
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Figure 2: Error rate as a function of rejection rate for systems C, C+A, and C+B

replicate this error rate, system C would need to reject not 50% but 75% of
the data. The error-reject curve for B+C shows improvement over C only in
a narrower range, and the improvement is not as marked as for A+C. The
reason for this is that B and C use the same courtesy image, while A and C
operate on di�erent images and therefore exploit a larger information base.
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