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Speech and handwriting

Conceptually, the techniques of linguistic pattern recognition are largely independent
of the medium, but overall performance is influenced by the preprocessing to such
an extent that until a few years ago the pattern recognition step was generally viewed
as a small appendix to the main body of signal processing knowledge. To this day,
it remains impossible to build a serious system without paying close attention to
preprocessing, and deep algorithmic work on the recognizer will often yield smaller
gains than seemingly more superficial changes to the front end. In Section 9.1, we
introduce a speech coding method, linear prediction, that has played an important
role in practical application since the 1970s. We extend the discussion of quantization
started in Section 8.1 from scalars to vectors and discuss the Fourier transform-based
(homomorphic) techniques that currently dominate the field.

These techniques, in spite of their analytic sophistication, are still low-level inas-
much as the signal can still be reconstructed, often without perceptually noticeable
loss from the encoding, yet they suffice to decrease the bitrate by several orders of
magnitude. As we shall see, the bitrate provides a surprisingly good measure of our
understanding of the nature of speech: the more we know, the better we can com-
press the signal. This observation extends well beyond low-level signal processing
in that incorporating deeper knowledge about the speech signal leads to further gains
in compression. In Section 9.2, we discuss how a central component of the linguistic
theory of speech, the phonemic principle introduced in Section 3.1, can be leveraged
to yield further compression gains in HMMs.

The recognition of handwritten or printed text by computer is referred to as op-
tical character recognition (OCR). When the input device is a digitizer tablet that
transmits the signal in real time (as in pen-based computers and personal digital as-
sistants) or includes timing information together with pen position (as in signature
capture), we speak of dynamic recognition. When the input device is a still camera
or a scanner, which captures the position of digital ink on the page but not the order
in which the ink was laid down, we speak of static or image-based OCR. The dif-
ficulties encountered in dynamic OCR are largely similar to those found in speech
recognition: the stream of position/pen pressure values output by the digitizer tablet
is analogous to the stream of speech signal vectors output by the audio processing
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front end, and the same kinds of low-level signal processing and pattern recognition
techniques are widely employed for both. In Section 9.3, we will deal primarily with
static OCR, emphasizing those aspects of the problem that have no counterpart in the
recognition of spoken or signed language.

9.1 Low-level speech processing

A two-way infinite sequence s = ...S5_», S_1, S0, 1, 52, . . . Will be called a (discrete)
signal, and its generating function Y oo s,z~" will be called its z transform
Z(s). Signals will also be denoted by {s,}. If the signal is bounded (a condition we
can always enforce by clipping it; see Section 8.1) and satisfies further conditions that
are generally met, the z transform will be absolutely convergent on a disk of positive
radius and the signal can be uniquely reconstructed from it. A filter (sometimes
called a system) is a mapping from signals to signals: we are particularly interested
in the case where the mapping is both linear and time-invariant (invariant under the
shift operator S). The signal u defined by ug = 1,u, = 0 (n # 0) is called the
unit impulse, and the image {/,} of this signal under some filter F is called the
impulse response i = F(u) of the filter F. As long as h,, is absolute convergent,
h completely characterizes any linear and time-invariant filter. To see this, consider
any arbitrary input x and write it as Y . X,ufy, where ull' is ug shifted by m.
Since F is linear and time-invariant, we obtain

[ee) oo
F(x)n = Z Xmhn—m = Z Xn—mhm 9.1
m=—00 m=—00
This sum, which will always converge for x bounded, determines the output uniquely
just from the values of /. A linear and time-invariant filter is called causal if &, = 0
for n < 0 and stable if bounded input always produces bounded output — it is trivial
to see that absolute convergence of /1, is both necessary and sufficient for stability. In
what follows, we will be chiefly concerned with filters that are linear, time-invariant,
causal, and stable and will omit these qualifications.
In speech processing applications, we are particularly concerned with the output
of a filter F' with impulse response 7 when the input is a sampled complex sine wave
x = {e'®"}. Using (9.1), we obtain

oo oo
Vn = F(X)n — Z eia)(n—m)hm — eia)n Z hme—iwm 9.2)
m=—o00 m=—o00
The term outside the sum is x,. The function Y v hme '™ will be denoted

H(e'®) and called the frequency response or transfer function of F. With this
notation, (9.2) becomes the more perspicuous

y = H(e'“)x 9.3)
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where equality among signals means termwise equality. In general, we define the
frequency spectrum F(x) of a signal x as

oo
X(E®)y= > xme o™ (9.4)
m=—00
so that the frequency response is just the frequency spectrum of the impulse response.
Since (9.4) is a FQurier seri_es with coefficients x, we can make good use of the
orthogonality of ¢'®” and ¢'®™ on the —7 < w < m interval and find x from its
frequency spectrum by the well-known Fourier inversion formula
1 T . .
Xp = — X ®)e'"dw 9.5)
21 J_ 5
Now if y = F(x), and we denote the frequency spectrum of x, y, and A (the impulse
response of F) by X, Y, and H, respectively, we have, by applying (9.5) to y,
1 (™ oo
Vn = — Y('®)e'“"dw (9.6)
27 J_n
Since (9.5) holds for all n, we can apply F to the whole series, obtaining

1 [~ . .
Yn = — X('®)F(e'“")dw 9.7
2 J_,
By applying (9.3) to the series e’ the last term in this integral, F(e’®"), can be
expressed as H(e'®)e'®". Comparing this to (9.6) yields
1 [~ . L 1 [~ o
— X ®)H(e®)e'"dw = y, = —/ Y('®)e' " dw (9.8)
2 J_» 2w J_x

which, by the uniqueness of Fourier coefficients, leads to

X(e'®)VH(e'®) = Y(e'?) (9.9)

Thus, the frequency spectrum of the output is obtained by multiplying the frequency
spectrum of the input with the frequency response of the filter.

The frequency spectrum and the z transform are both obtained from a signal by
using the terms as coefficients in a series of complex functions: the frequency spec-
trum is the z transform with z = ¢’® (i.e. investigated over the unit circle). Taking
the z transform of both sides of (9.1), it is trivially seen that (9.9) is valid for X, Y, H
z transforms (rather than frequency spectra) of x, y, h. In general, we make little
distinction between Z and F and for any signal s,7¢,...,x, y,z will follow the en-
gineering convention of using uppercase S, 7, ..., X, Y, Z to denote its z transform
and frequency spectrum alike. The use of lowercase letters indicates, in engineering
parlance, signals and operations in the time domain, where the independent variable
is time, and the use of uppercase letters refers to the frequency domain, where the
independent variable is frequency. The two domains are connected by the transforms
and their inverses.
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While we are chiefly interested in discrete (digital) signals, it is clear that the
speech waveform is inherently continuous (analog), and one could replace (9.4) by a
continuous version (distinguished by a subscript C):

oo

Xc(iQ) = / x(1)e ¥ dr (9.10)

—00
If we measure the continuous signal x(¢) at time intervals T apart (this is called

using a sampling frequency w; = 27/ T), by the inverse Fourier transform (which
of course remains applicable in the continuous case), we obtain

1 [ :
x(nT) = E/ Xc(i Q)T dQ 9.11)
—0Q

We shall now subdivide the integration domain to intervals of length 277/ T starting
at 2m — 1)/ T and obtain the Fourier expansion

(nT) T /n/T ! EOO: Xc(i(w +2mm/T))e'*"Td 9.12)
xX(n = — — L\ am e w .
2 )y T ¢

m=—0oo

where we substituted w + 27rm/ T for Q in the mth interval. By (9.5) the discrete
signal {x(nT)} satisfies

T /T . .
x(nT) = — XETel"T do (9.13)
2 —n/T

Comparing (9.12) with (9.13) yields

T mT | & , T /T , .
— — Z Xc(i(w+2mm/T))e T dw = —/ XETyel T do
2 —n/T T P— 2 —n/T
(9.14)

and by the uniqueness of Fourier coefficients we have

 Q— .

= > Xcli(w+2rm/T)) = X(e'“T) (9.15)

m=—o00

If x(¢) is bandlimited in the sense that X¢ (iw) = 0 for any |w| > @, and we
restrict ourselves to sampling frequencies ws = 27w/T > 2w, within the interval
|we| < ws/2 all but the central term of (9.15) will be zero and there we have

%Xc (iw) = X(°T) (9.16)

In other words, the continuous frequency spectrum (Fourier transform) X¢ is fully
determined by the discrete frequency spectrum X, even though though X will have
sidebands (kwg translates of the central band) while X¢ will be, as we assumed,
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identically zero outside the critical band. Since the Fourier transform uniquely de-
termines the function, and the discrete spectrum was computed entirely on the basis
of the sampled values, these values uniquely determine the original continuous func-
tion, and we have the following theorem.

Theorem 9.1.1 Sampling theorem. If a continuous signal x(¢) is bandlimited with
cutoff frequency w., sampling it at any frequency wy; = 27/T > 2w, or higher
provides a discrete signal {x(nT)} from which x(¢) can be fully reconstructed.

Discussion As is well-known, the upper frequency threshold of human hearing is
about 20 kHz, and human speech actually contains only a negligible amount of en-
ergy above 12 kHz. The 44.1 kHz sampling rate of audio CDs was set with the
sampling theorem in mind since analog HiFi equipment was designed to operate in
the 20 Hz — 20 kHz range and the intention was to preserve all high fidelity audio
in digital format. Telephone speech, sampled at 8 kHz, is perfectly understandable,
in spite of the fact that much of the frequency range below 350 Hz is also severely
attenuated. In speech research, a sampling rate of 20 kHz, and in speech communi-
cations a 10 kHz sampling rate, is common. In what follows, we concentrate on the
digital case, since Theorem 9.1.1 guarantees that nothing of importance is lost that
way.

In Section 8.1, we discussed log PCM speech coding, which, by means of fitting
the quantization steps to the long-term amplitude distribution of speech, achieves
toll quality transmission at 64 kbps. To go beyond this limit, we need to exploit
short-term regularities. Perhaps the simplest idea is to use delta coding, transmitting
the difference between two adjacent samples rather than the samples themselves.
Since the differences are generally smaller than the values, it turns out we can save
about 1 bit per sample and still provide speech quality equivalent to the original (see
Jayant and Noll 1984). Linear predictive coding (LPC) extends the basic idea of delta
coding by considering not only the previous sample but the previous p samples to be
available for predicting the next sample. Thus we shall consider the general problem
of obtaining the signal s from some unknown input signal u such that

)4 q
Sy = — Zaksn_k + G Zblun—l 9.17)
k=1 1=0

i.e. as a linear combination of the past ¢ + 1 inputs and the past p outputs. (We
assume by = 1 and separate out a gain factor G for putting the equations in a more
intuitive form.) With these conventions, the transfer function can be written in terms
of z transforms as

S G 1+ Y7 bz
CU(z) 1+ >7_ agz ™k

i.e. as a Padé approximation. Since the zeros of the denominator appear as poles in
the whole expression, in signal processing (9.18) is known as the pole-zero model,
with the key case where b; = 0 for [ > 1 called the all-pole model — the number of
terms p is called the order of the model.

Engineers call a signal stationary if its statistical characteristics, as summarized
in the frequency spectrum, stay constant over long periods of time. The vibrations

H(z) (9.18)
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produced by rotating machinery or the spattering of rain are good examples. We say
a signal X (¢) is stationary in the wide sense if its expectation E(X(¢)) is constant
and the correlation function E (X (¢)X(s)) depends only on the difference ¢t — s. This
is less strict than Definition 8.2.1 because we do not demand full invariance under a
single sample shift (and thus by transitivity over the entire timeline) but use a weaker
notion of ‘approximate’ invariance instead. The situation is further complicated by
the fact that speech is rarely stationary, even in this wide sense, over more than a few
pitch periods — this is referred to as the signal being quasistationary. At the high end
(infants, sopranos), the glottal pulses can follow each other as fast as every 2 ms, for
adult male speech 612 ms is typical, while at the low end (basso profondo) 22 ms
or even longer pitch periods are found.

To take the quasistationary nature of the signal into account, speech process-
ing generally relies on the use of windowing techniques, computing spectra on
the basis of samples within a 20 ms stretch. Typically such a window will con-
tain more than a full pitch period and thus allow for very good reconstruction of
the signal. Because of edge effects (produced when the pitch period is close to the
window size), rectangular windows are rarely used. Rather, the signal within the
window is multiplied with a windowing function such as the Hamming window,
wy, = 0.54 — 0.46cos(2mn/(N — 1)). In speech processing, given a 20 kHz sam-
pling rate and 20 ms windows, N is about 400, depending on how the edges are
treated. Windows are generally overlapped 50% so that each sample appears in two
successive windows. In other words, analysis proceeds at a frame rate of 100 Hz.

Aside from computing windowed functions, pointwise multiplication of two sig-
nals is rarely called for. A more important operation is the convolution s o ¢ of
two signals s and ¢ given by (s o t); = Zflv:_ol Sntx—n in the discrete case and by
[ s(0)t(x — t)d7 in the continuous case. When the signal has only finite support
(e.g. because of windowing), we can consider the indexes mod N in performing the
summation, a method known as circular convolution, or we can take values of s and
t outside the range 0, ..., N to be zeros, a method known as linear convolution. Un-
less explicitly stated otherwise, in what follows we assume circular convolution for
finite signals. For the infinite case, (9.1) asserts that the output of a filter F is simply
the convolution of the input and the impulse response of F, and (9.9) asserts that
convolution in the time domain amounts to multiplication in the frequency domain.

The practical design of filters, being concerned mostly with the frequency re-
sponse, generally proceeds in the frequency domain. Of particular interest are high-
pass filters, whose response is a step function (0 below the frequency cutoff and 1
above), lowpass filters (1 below the cutoff and 0 above), and bandpass filters (0 be-
low the bottom and above the top of the band, 1 inside the band). Since these ideal
pass characteristics can be approximated by both analog and digital circuitry at rea-
sonable cost, it is common for signal processing algorithms to be implemented using
filters as building blocks, and much of the literature on speech production, process-
ing, and perception is actually presented in these terms. One tool used particularly
often is a filter bank composed of several filters, each sensitive only in a specified
subband of the region of interest. In mel filtering, triangular transfer function filters
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are used in an overlapping sequence that follows the classical mel subjective pitch
scale (Stevens and Volkman 1940, Beranek 1949).

Exercise 9.1 Given capacitors, resistors, and coils of arbitrary precision, design high-
low- and bandpass filters that pass pure sinusoidal voltage signals within a prescribed
error factor relative to the ideal filter characteristics.

After windowing, we are faced with a very different data reduction problem: instead
of a fast (20 kHz) sequence of (16 bit) scalars, we need to compress a much slower
(0.1 kHz) sequence of vectors, where a single vector accounts for the contents of a
whole frame. We begin by replacing the signal within a window by some appropriate
function of it such as its discrete Fourier transform (DFT), given by

N-1 A
Se=Y spe” FEn (9.19)
n=0

Here Sj is the amplitude of the signal at frequency 27k /N, and it is common to
use notation like S(w) in analogy with the continuous case even though, strictly
speaking, we are now concerned only with frequencies that are a multiple of 277/ N.
Of special note is the discrete version of Parseval’s theorem:

N-1 1 N-1
D lsalP = 3 ISP (9.20)
n=0 n=0

As in the continuous case, Parseval’s theorem is interpreted as saying that the total
energy of the signal (defined there by ffgo s2(t)dt) can also be obtained by inte-
grating the energy in the frequency domain. The contribution of a frequency range
(also known as a frequency band in signal processing) a < w < b is given by

/ : S(w)dw + f__ba S(w)dw — the first term is known as the contribution of the pos-
itive frequency and the second as that of the negative frequency. In analogy with the
continuous case, the squared absolute values of the DFT coefficients are called the
energy spectrum and are denoted P (w) (with implicit time normalization, the term
power spectrum is also often used).

From a given energy spectrum, we can recover the moduli of the DFT coeffi-
cients by taking square roots, but we lose their argument (known in this context as
the phase), so we cannot fully reconstruct the original signal. However, hearers are
relatively insensitive to the distinction between waveforms inverted from full spectra
and from modulus information alone (at least for sound presented by loudspeakers in
a room with normal acoustics — for sounds presented directly through earphones, dis-
carding the phase information is more problematic; see Klatt 1987) and for many, if
not all, purposes in speech processing, energy spectra are sufficient. This is not to say
that the phase is irrelevant (to the contrary, providing phase continuity is important
to the perceived naturalness of synthesized speech) or that it contains no information
(see Paliwal and Atal (2003) for recognition based on phase information alone), but
the situation is somewhat analogous to speech, which contains enough information
in the 150 Hz — 1.5 kHz band to be nearly perfectly intelligible but also contains
enough information in the 1.5-15 kHz band to be equally intelligible.
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The DFT has several important properties that make it especially well-suited
for the analysis of speech. First, note that (9.19) is actually a linear transform of
the inputs (with complex coefficients, to be sure, but still linear). The inverse DFT
(IDFT) is therefore also a linear transform and one that is practically identical to the
DFT:

Se= Y Spe Rk 9.21)

i.e. only the sign in the exponents and the normalization factor 1/N are different.
There are, significantly, fast Fourier transform (FFT) algorithms that compute the
DFT or the IDFT in O(N log(N)) steps instead of the expected N2 steps.

Since in (linear) acoustics an echo is computed as a convolution of the original
signal with a function representing the objects on which the sound is reflected, it is
natural to model speech as an acoustic source (either the glottis, or, in the case of
unvoiced sounds, frication noise generated at some constriction in the vocal tract)
getting filtered by the shape of the vocal tract downstream from the source. This is
known as the source-filter model of speech production (Fant 1960). As convolution
corresponds to multiplication of generating functions or DFTs, the next natural step
is to take logarithms and investigate the additive version of the transform, especially
as signal processing offers very effective filtering techniques for separating signals
whose energy lies in separate frequency ranges.

Experience shows that before taking the logarithm it is advantageous to rescale
the energy spectrum by using Q = 6log(w/1200 + /1 + (w/12007)2), which
converts the frequency variable w given in radians/sec into bark units 2 (Schroeder
1977), as the bark scale (Zwicker et al. 1957) models important features of human
hearing better than the linear (physical) or logarithmic (musical) frequency scale
would. Essentially the same step, nonlinear warping of frequencies, can be accom-
plished by more complex signal processing in the time domain using filter banks
arranged on the mel scale (Davis and Mermelstein 1980). Further perceptually moti-
vated signal processing steps, such as preemphasis of the data to model the different
sensitivities of human hearing at different frequencies, or amplitude compression to
model the Weber-Fechner law, are used in various schemes, but we do not follow this
line of development here as it contributes little to speech recognition beyond making
it more noise-robust (Hermansky 1990, Hermansky et al. 1991, Shannon and Paliwal
2003).

If we now take the log of the (mel- or bark-scaled) energy spectral coefficients,
what was a multiplicative relationship (9.9) between a source signal (a glottal pulse
for voiced sounds or fricative noise for unvoiced sounds) and a filter given by the
shape of the vocal tract becomes an additive relation. The log energy spectrum itself,
being a finite sequence of (real) values, can be considered a finite signal, amenable
to analysis by DFT or by IDFT (the two differ only in circular order and a constant
multiplier). We call the IDFT of the log of the energy spectrum the cepstrum of the
original signal and call its independent variable the quefrency in order to avoid col-
lision with the standard notion of frequency. For example, if we find a cepstral peak
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at quefrency 166, this means recurrence at every 166 samples, which at a sampling
rate of 20 kHz amounts to a real frequency of 120 Hz (Noll 1964,1967).

As we are particularly interested in the case where the original signal or the
energy spectrum is mel- or bark-wrapped, we note here that in mel scaling, a great
deal of economy can be achieved by keeping only a few (generally 12—-16) filter bank
outputs, so that the dimension of the cepstral parameter space is kept at 12—16. In the
bark case, we achieve the same effect by downsampling; i.e. keeping only a few
(generally 16-20) points in the energy spectrum. To fully assess the savings entailed
by these steps would require an analysis of the quantization losses. Clearly, 32 bit
resolution on the cepstral parameters is far more than what we need. We postpone
this step but note that 18 32-bit parameters for 100 frames per second would mean
57.6 kbps coding, not a particularly significant improvement over the 64 kbps log
PCM scheme discussed earlier.

The savings will come from the source-filter approach: the glottal pulse can be
modeled by an impulse function (in many cases, more realistic models are desirable
— source modeling is a major research topic on its own) and frication can be mod-
eled by white noise. Obviously, neither the impulse nor the white noise needs to be
transmitted. All that is required is some encoding of the filter shape plus one bit per
frame to encode whether the frame is voiced or unvoiced — in voiced frames, another
8—10 bits are used to convey the fundamental frequency FO. As we shall see, the rel-
evant information about the transfer function of the filter can be transmitted in 40—-80
bits, and frame rates as low as 40-50 Hz are sufficient, yielding toll or communica-
tions quality speech coding at 16 kbps or lower. The main advantage of the cepstral
representation is that spectral characteristics of the source and the filter are largely
separated in the quefrency domain and can be extracted (or suppressed) by bandpass
(resp. notch) filtering (called liftering in this domain).

Let us now turn to the issue of modeling a signal, be it an actual time domain
signal or a series of spectral or cepstral coefficients, in the form (9.17), using the all-
pole model. We will for the moment ignore the input signal u, and look for a least
squares error solution to e, = s, + Z,le aySy—k- By setting the partial derivatives
of Zn eﬁ to zero, we obtain the set of normal equations

p

DAk D SukSn—i == ) SnSn—i (9.22)

k=1 n n

For N finite, the expressions 2}11\72—01 Sy—kSn—i are known as the covariances and will
be collected in the covariance matrix ¢;x, which is symmetric. If N is infinite, only
the differences i — k matter, and the same expression is called the autocorrelation
and is denoted by R(i — k). Either way, we have p linear equations in p unknowns,
the LPC coefficients, and may take advantage of the special form of the covariance
or autocorrelation matrix to solve the problem relatively quickly.

Exercise 9.2 Assuming that the autocorrelation coefficients R(j) have already been
computed (e.g. from estimating them in a fixed size window), find an algorithm to
solve equations (9.22) in O(p?) steps.
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If we assume that the signal values s; are samples of random variables X;, it is the
expected value E(e2) of the squared error that we wish to minimize, and again by
setting the partial derivatives to zero we obtain

p
D akEGn—iesn—i) = —E(susn—i) (9:23)
k=1

For a stationary process, E(s,—xSp—i) = R(k — i) holds, and speech is generally

considered quasistationary to the extent that this remains a reasonable approximation

if R is estimated on a window comprising at most a few pitch periods.

So far, we have ignored the input signal # in (9.17), but it is clear that the equation
can hold with error e, = 0 in an all-pole model only if Gu, = e,. We cannot take
advantage of this observation point by point (to introduce a term that corrects for the
prediction error would require knowing the error in advance), but we can use it in the
average in the following sense: if we want the energy of the actual signal to be the
same as the energy of the predicted signal, the total energy of the input signal must
equal the total energy of the error signal, Y, €2 = ", (sa + >_r_, aks>_,). Using
(9.22), we can see this to be

D
Ep=)s7+> ar Y SnSni (9.24)
n k=1 n

or, using the autocorrelations R(i), just £, = R(0) + Z,’Zzl ag R(k). If the input
signal u is the unit impulse, its energy will be G2, which must be set equal to the en-
ergy E, of the error signal that we just computed. Since the R(i) must be computed
anyway if the autocorrelation method is used to determine the a;, the gain G now
can also be computed from

p
G> =R(0) + Y _ arR(k) (9.25)
k=1
to provide a complete characterization of the transfer function H(z) in (9.18) as long
as no zeros, just poles (zeros in the denominator), are used.

Exercise 9.3 If the samples u,, are uncorrelated (white noise), show that the autocor-
relations Ié(i) of the output signal §,, = — Z,’C’:l aSn—k + Guy, are the same as the
autocorrelations R(7) of the original signal as long as G is set so as to preserve the
total energy IQ(O) = R(0). Does (9.25) remain true in this case?

The considerations above provide justification only for the LPC coding of voiced
(glottal pulse source) and unvoiced (white noise source) signals, but it turns out that
all-pole models are applied with noticeable success to signals such as cepstra that
have characteristics very different from those of the raw speech signal. So far, we
have decomposed the original signal into voiced and unvoiced frames and devoted
8-10 bits per frame to encoding the pitch (FO) of voiced frames. What remains is
transmitting the LPC coefficients a; and the gain G. Since these are sensitive to
quantization noise, the predictors a; are often replaced by reflection coefficients k;,
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which can be computed essentially by the same recursive procedure that is used in
solving (9.22). Taking p = 10 and using 10 bits per coefficient, 50 frames/sec, we
obtain cell grade speech coding at about one-tenth the bitrate of log PCM.

To make further progress, it makes sense to model the properties of the LPC (re-
flection or predictor) coefficients jointly. A vector quantizer (VQ) is an algorithm
that maps a sequence x; of (real or complex) vectors on binary sequences y(X;)
suitable for data transmission. It is generally assumed that the range of y is finite:
elements of the range are called channel symbols. For each channel symbol c, the
decoder recovers a fixed vector X, from a table M called the codebook or the re-
production alphabet. Since the coding is generally lossy (the exception would be
the rare case when all inputs exactly match some codebook vector), we do not insist
that the dimension of the output match the dimension of the input. When they do,
the error (quantization loss) can be measured by the average (expected) distortion
introduced by the VQ scheme, again measured in decibels:

E(xID
E(d(x.%))

In general, there is no reason to believe that Euclidean distance is ideally suited to
measuring the actual distortion caused by a VQ system. For example, if the vectors
to be transmitted are vowel formant frequencies, as in the Peterson-Barney data dis-
cussed in Section 8.1, it is well-known that the perceptual effects of perturbing F1,
F2, and F3 are markedly different (see Flanagan 1955), and a distortion measure that
is invariant under permutation of the vector components is structurally incapable of
describing this situation well.

If we know the probability distribution P over some space X of the vectors to
be transmitted and know the ideal distance measure d, the problem reduces to a
task of unsupervised clustering: find codebook vectors X1, ..., X, such that SQNR
is maximized. Since the numerator of (9.26) is given, the task is to minimize the
denominator, which, assuming the x inputs are drawn randomly according to P, is
given by

SQNR = 10log,, (9.26)

/ d(x,%)dP(x) (9.27)
X

a quantity known as the reconstruction error of the VG system defined by y and
the vectors X;. Clearly, the larger the codebook, the more we can decrease the recon-
struction error, but this is offset by an increased number of bits required to transmit
the VQ codes. According to the MDL principle (see Section 7.3.1), we need to opti-
mize the cost (in bits) of transmitting the channel symbols plus the cost of encoding
x given X;. In practical systems where the inputs are N -dimensional vectors of 32-bit
reals, the cost of transmitting the residuals x — x; would be overwhelming compared
with the log, (| M |) bits required to transmit the codes. Without knowing much about
the probability distribution P, we would have to dedicate 32N bits to transmitting a
residual, and in practice codebooks over |M | > 232 make little sense as they would
take up too much memory (in fact, typical codebook sizes are in the 212220 range).
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If the size m of the codebook (also known as the number of levels in analogy
to the scalar case) is set in advance, many clustering algorithms are applicable. The
most commonly used one is Lloyd’s algorithm, also known as the LBG algorithm,
which uses a random sample of signals s (1 < k < r > m). First we pick, either

based on some knowledge about P or randomly, cluster seeds xfo) (1 <i<m)and
consider for each s; the Xﬁ_o) that is closest to it as measured by distance d : the index j

(given in binary) is defined as y©@(s;). In step k + 1, we take the (Euclidean) centroid
of all samples in the inverse image of y®) (i), and use these as the reconstruction

vector xl(kﬂ) transmitted by the label y *+1) (i). We stop when the recognition error
no longer improves (which can happen without having reached a global optimum;
see Gray and Karnin 1982). With carefully controlled VQ techniques, taking full
advantage of the HMM structure, communications quality speech coding at 100-400
bps, approaching the phonemic bitrate is possible (Picone and Doddington 1989).
Concatenation techniques, which use the same Viterbi search as HMMs, can improve
this to toll quality without increasing the bitrate (Lee and Cox 2001).

If the final goal is not just compression but recognition of the compressed signal,
the situation changes quite markedly in that supervised clustering techniques now
become available. Here we assume that we have labeled (also known as truthed)
vectors s whose recognized (truth) value is 7 (sg) taken from a finite set #q, ..., .
Ideally, we would want to set m = [, so that the quantization provides exactly as
many levels as we would ultimately need to distinguish in the classification stage,
but in practice this is not always feasible. For example, if the labels correspond to
phonemes, there may be very distinct signals (corresponding e.g. to trilled vs. tapped
r sounds) that occupy very distinct regions of the signal space, so that clustering
them together would result in a centroid that is part of neither the trilled nor the
tapped region of signals. (English makes no phonological distinction between these
two clusters, but in languages like Spanish the distinction is phonological: consider
perro ‘dog’ vs. pero ‘but’.) Assuming m > [ still makes sense because transmit-
ting differently labeled s values by the same code would doom to failure whatever
recognition algorithm we may want to use for the reconstructed signal.

In the supervised case, any distortion that leaves the truth value intact can be
neglected, so the distance d(s, §) between the original and the reconstructed signal
should be set as O if they have the same label and as 1 if they do not. As long as there
is no absolute neutralization (i.e. no indistinguishable signals can carry different la-
bels, see Section 8.1), the inverse images of the labels #1, ..., #; partition the signal
space X into disjoint sets X7, ..., X; (plus possibly a remainder set X, containing
nonlabelable ‘junk’ data), and it is natural to take the centroids of X; as the code-
book vectors. When the X; are very far from perfect spheres in Euclidean space, it
may make a great deal of sense to approximate them by the union of many spheres
and simply take the labeled samples as the center of each sphere. Such systems are
known as nearest neighbor classifiers since for any incoming signal x they find the
nearest (in Euclidean distance) labeled sample s; and assign it the same label (s; ).

The ideal metric d that would yield O (resp. 1) between two samples exactly when
they have the same (resp. different) labels is only known to us in artificially created
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examples. On real data we must work with some approximation. In the case of speech
signals, it is reasonable to assume that if two signals have very little difference in
their energy spectra, they are more likely to be tokens of the same type than when
their energy spectra indicate audible differences at some frequency. We therefore
investigate the case where d measures the total energy of the quantization error — for
this to be meaningful, we assume the original signals are all normalized (amplitude
scaled) to have the same energy » ; sl.2 = 1 and that the gain of the all-pole filters
used to encode the data is set in accordance with (9.25).

Suppose the task is to recognize utterances of roughly equal duration (N sam-
ples) from a closed set (e.g. isolated digits), with each of the utterance types #1, ...,
having equal probability 1//. We have a number of labeled sample utterances, but our
goal is not to identify them (since no two utterances are perfectly identical, the sam-
ple could just be memorized) but rather to identify hitherto unseen signals taken from
the same subset X of RV, X = (J!_y X;, where P(Xo) = 0, P(X;) = 1/ (1 <
i <1[). Our goal is to create codebook vectors ¢; in p-dimensional space, p < N
for each of the [ clusters X; so that we get a nearest neighbor classifier. For any in-
coming signal s, we compute d(s,¢;) for 1 < i < [ and select the i for which this
value is minimal. We want the quantization error to be relatively small when the LPC
model of s is close to one of the ¢;, and we are not much worried about the fringe
cases when it is far from each ¢; since their probability is low.

Let us pick a single cluster center ¢, given by an all-pole filter with predictor
parameters ay, ..., d, and gain G. If we use white noise for input to this filter, we
should obtain unvoiced versions (akin to whispering but without decrease in signal
energy) of the original signals. The log probability of obtaining any particular signal
s from c is given approximately by

N 1
log P(s|c) = — (log 21G* + EcRscT) (9.28)

Here R; is the autocorrelation matrix of s, which is symmetric and positive semidef-
inite. Instead of a true distance (symmetrical and satisfying the triangle inequality)
we only have a weaker type of d called a divergence, which will be small if the
signal s is close to the model ¢ and large if it is not. Equation (9.28), known as
the Itakura-Saito divergence, is a special case of the Kullback-Leibler divergence
(see Section 7.2). If we apply Lloyd’s algorithm with the Itakura-Saito divergence,
what we do in effect is average (in the Euclidean sense) the R, matrices for each
class X; and compute the model ¢; on the basis of these average matrices using the
autocorrelation version of (9.22).

9.2 Phonemes as hidden units

Conceptually we can distinguish two main clusters of phenomena in the study of
speech: phonological and phonetic. On the phonological side, we find discrete men-
tal units defined in terms of contrast, where change from one unit to the other results
in change of meaning. A good example is tone, where typically only two levels, high
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and low, are available — some languages have three, but languages such as Mandarin
Chinese that distinguish many ‘tones’ are really distinguishing many tonal config-
urations (sequences of high and low tones, see Section 3.3). On the phonetic side
we have continuously variable physical parameters like pitch (the frequency FO with
which the vocal folds open and close) that can be changed by any small amount with-
out affecting the meaning. Almost all phenomena we discussed in Chapters 3 and 4
fit squarely in the phonological cluster, while almost everything about the signals
discussed so far indicates continuity, and discretization by sampling or VQ does not
alter this picture since the number of discrete levels used in these steps is vastly larger
than the number of discrete units. For example, in discretizing pitch, 2561024 levels
(8-10 bits) are common, while for tone we would generally need only 2—4 levels (1
or 2 bits).

The conceptual distinction is matched by reliance on different sorts of evidence:
phonology views the human apparatus for speech production and perception as a le-
gitimate instrument of data collection and relies almost exclusively on data (judg-
ments concerning the grammaticality and well-formedness of certain forms) that
phoneticians regard as subjective, while phonetics prefers to consider objective data
such as speech waveforms. Yet the distinction between phonological and phonetic is
by no means clear-cut, and the theory of lexical phonology and morphology (LPM,
see Kiparsky 1982) distinguishes between two classes of phonological rules, lexi-
cal and postlexical, of which only the lexical class has clearly and unambiguously
phonological character — the postlexical class shares many key features with purely
phonetic rules. Here the distinctions, as summarized in Kaisse and Hargus (1993),
are drawn as follows:

Lexical Postlexical

(a) word-bounded not word-bounded

(b) access to word-internal structure access to phrase structure only
assigned at same level

(c) precede all postlexical rules follow all lexical rules

(d) cyclic apply once

(e) disjunctively ordered with conjunctively ordered with
respect to other lexical rules respect to lexical rules

(f) apply in derived environments apply across the board

(g) structure-preserving not structure-preserving

(h) apply to lexical categories only apply to all categories

(i) may have exceptions automatic

(j) not transferred to a second language transferable to second language
(k) outputs subject to lexical diffusion subject to neogrammarian sound change
(1) apply categorically may have gradient outputs

While the criteria (a—I) are only near-truths, they are sufficient for classifying al-
most any rule as clearly lexical or postlexical. This is particularly striking when
processes that historically start out as phonetic get phonologized. Not only will such
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rules change character from gradual (continuous) to discrete (1), they will also be-
gin to affect different elements of the lexicon differently (k), acquire exceptions (i)
and morphological conditions (4), and begin to participate in the phonological rule
system in ways phonetic processes never do (c—f).

A good example is provided by phonetic coarticulation, a process that refers
both to the local smoothing of articulatory trajectories and to longer-range interac-
tions that can be observed e.g. between two vowels separated by a consonant (Ohman
1966) whenever some speech organs move into position before the phoneme that will
require this comes up or stay in position afterwards. When the effect gets phonolo-
gized, it can operate over very long, in principle unbounded, ranges — a famous ex-
ample is the ruki rule in Sanskrit, which triggers retroflexation of s after phonemes
in the ruki class no matter how many nonruki consonants and vowels intervene. In
reference to their phonetic origin, such rules are known in phonology as anticipatory
and perseveratory rules of assimilation, irrespective of their range.

In Chapters 3 and 4 we presented all the discrete units generally agreed upon
in phonology: features (autosegments), phonemes, syllables, and words. (We also
presented some that are less widely used, such as moras, feet, and cola — here we
will simplify the discussion by concentrating on the better-known units.) Of these,
only words have a clear relationship to meanings. All others are motivated by the
mechanics of speech production and are meaningless in themselves. Even for words,
the appropriate phonological notion, the prosodic word, does not entirely coincide
with the grammatical (syntactic) notion of wordhood (see Section 4.1), but the two
are close enough to say that we can separate words from one another on the basis of
meaning most of the time.

How can the discrete and meaningless units used in phonology be realized in,
and recovered from, the undifferentiated continuous data provided by acoustic sig-
nals? What we call the naturalistic approach is to trace the causal chain, to the extent
feasible, from the brain through the movement of articulators and the resulting air
pressure changes. Within the brain, we assume some kind of combinatorical mech-
anism capable of computing the phonological representation of an utterance from
pieces stored in the mental lexicon. This representation in turn serves as a source of
complex nerve impulse patterns driving the articulators (Halle 1983), with the final
output determined by the acoustics of the vocal tract.

Note that the combinatorical mechanism does not necessarily operate left to right.
In particular, intermediate representations, procedures, and structures are generally
viewed as having no theoretical status whatsoever, comparable to the scratch paper
that holds the intermediate results in long division. This view is shared by context-
sensitive rule-based phonology (Chomsky and Halle 1968), finite-state approaches
(Koskenniemi 1983), and optimality theory (Prince and Smolensky 1993). Only mul-
tistratal theories, such as LPM, treat the output of the individual levels as real, and
even then there is no promise of left to right computation. In particular, there is no
Greibach normal form (see Ex. 2.4) that would force outputting of a segment for
each unit of computation effort.

To the extent that speech production and speech perception rely on the same dis-
crete phonological representation, tracing the causal chain on the decoder side im-
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plies that the acoustic signal is perceived in terms of the same articulator movement
patterns as were used in producing the signal. This is known as the motor theory of
speech perception (Liberman 1957). To quote Liberman and Mattingly (1989:491),
speech perception

processes the acoustic signal so as to recover the coarticulated gestures that
produced it. These gestures are the primitives that the mechanisms of speech
production translate into actual articulator movements, and they are also
the primitives that the specialized mechanisms of speech perception recover
from the signal.

Tracing the causal chain this way goes a long way toward explaining what the phono-
logical representations, so painstakingly built by the linguist, are good for (besides
accounting for the linguistic data of course). If the representations can be recast in
terms of articulatory gestures, and moreover if indeed these gestures provide the key
to speech perception, a wealth of extralinguistic evidence, ranging from X-ray mi-
crobeam tracing of the articulators (Fujimura et al. 1973) to perception studies of
formant location (Klein et al. 1970), can be brought to bear on the description of
these representations.

There are two problems left unanswered by following the causal chain. First, the
gap between the discrete and the continuous is left unbridged: even if we identify
phonological representations with gestural scores, these are continuous at best for
timing parameters and the main gestural subcomponents (such as opening or closing
the lips, raising or lowering the velum, etc.) remain discrete. Whatever we may do,
we still need to recover the discrete articulatory configurations from a continuum of
signals. Second, there is an important range of phenomena from sign language to
handwriting that raises the same technical issues, but this time without the benefit of
a complex (and arguably genetically set) mechanism between the representation and
the perceived signal.

It is at this point that the modern theory of speech recognition parts with the
naturalistic theory: if there is a need to create a mapping from discrete elements to
continuous realizations in any case, there does not seem to be a significant advantage
in creating an intermediate representation that is tightly coupled to a complex mech-
anism that is specific to the physiology of the vocal tract. As a case in point, let us
consider the theory of distinctive features (see Section 3.2). A rather detailed qualita-
tive description of the articulatory and acoustic correlates of distinctive features was
available as early as in Jakobson et al. (1952). Nearly three decades later, Stevens and
Blumstein (1981) still had not found a way of turning this into a quantitative descrip-
tion that could be used to automatically detect features (see e.g. Remez 1979), and
to this day research in this area has failed to reveal a set of reliable acoustic cues for
phonological features of the sort envisioned in Cherry, Halle, and Jakobson (1953)
and Cherry (1956).

Thus the naturalistic model that interposes a gestural layer between the men-
tal representations and the acoustic signal has been replaced by a simpler and more
direct view of the mental lexicon that is assumed to store highly specific acoustic
engrams recorded during the language acquisition process: these engrams can be
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directly used as lookup keys into a mental database that will contain syntactic, se-
mantic, morphological, and other nonacoustic information about the form in question
(Klatt 1980). Under this view, surface forms are just acoustic signals, while under-
lying forms could contain detailed articulatory plans for the production of the form,
together with links to semantic, syntactic, and morphological information stored in
various formats.

The relationship between psychological units of linguistic processing and their
physical realizations is many to many, both with different phonological representa-
tions corresponding to the same utterance (neutralization; see Section 8.1) and with
the same representation having many realizations, and many conditioning factors,
ranging from the physical differences among speakers sharing the same competence
to the amount of distortion tolerated in the realization process. While phonology gen-
erally works with idealized data that preserve dialectally and grammatically condi-
tioned variation but suppress variation within the speech of an individual and across
individuals sharing the same dialect/sociolect, for the moment we lump all sources
of variation together, and defer the issue of how to separate these out.

The units that we shall take as basic are the phonemes, which are instrumental
in describing such a broad range of phenomena that their psychological reality can
hardly be disputed. A subjective, but nevertheless important factor is that most re-
searchers are convinced that they are in fact communicating using sentences, words,
syllables, and phonemes. A great deal of the reluctance of speech engineers to accept
distinctive features can no doubt be attributed to the fact that for features this subjec-
tive aspect is missing: no amount of introspection reveals the featural composition
of vowels, and to the extent introspection works (e.g. with place of articulation) it is
yielding results that are not easily expressible in terms of distinctive features unless
a more complex structure (feature geometry, see Section 3.2) is invoked.

A less subjective argument in favor of certain linguistic units can be made on
the basis of particular systems of writing. To the extent that a morpheme-, mora-,
syllable-, or phoneme-based writing system can be easily acquired and consistently
used by any speaker of the language, the psychological reality of the units forming
the basis of the system becomes hard to deny. Distinctive features fare slightly bet-
ter under this argument, given sound-writing systems such as Bell’s (1867) Visible
Speech or Sweet’s (1881) Sound Notation, but to make the point more forcefully, the
ease of use and portability of such writing systems to other languages needs to be
demonstrated. For now, the most portable system we have, the International Phonetic
Alphabet (IPA), is alphabetic, though the idea that its organization should reflect the
featural composition of sounds is no longer in doubt (see Halle and Ladefoged 1988).

The simplest direct model with phonemic units would be one where the mapping
is one to one, storing a single signal template with each phoneme. To account for
variation, we need to use a probability model of templates instead, leaving open the
possibility, corresponding to neutralization, that the same template may have nonzero
probability in the distribution associated to more than one phonemic unit. We thus
obtain a hidden Markov model, where the hidden units are phonemic, and the emis-
sion probabilities model the acoustic realization of phonemes. Transition probabili-
ties can be set in accordance with the phonotactics of the language being modeled
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or, if a description of the lexically stored phoneme strings (words) is available, in
accordance with this description.

Since the phonemic units are concatenative, the output signals should also be,
meaning either that we smooth the abrupt change between the end of one signal
(coming from one hidden state) and the beginning of the next signal (coming from
another hidden state) or we adjust the emissions so that only smoothly fitting sig-
nals can follow each other. While concatenation and smoothing continues to play an
important role in speech synthesis systems (see Klatt 1987, van Santen et al. 1997),
in speech recognition the second option has proven more fruitful: instead of directly
modeling phonemes, we model phonemes in context. For example, instead of a single
model for the i in mint, hint, lint, and tint we build as many separate models as there
can be phonemes preceding the i. If we do the same with the / phoneme, building
as many models as there can be phonemes following it (so that different /s are used
in lee, lie, low, lieu, etc.), we can be reasonably certain that the appropriate / model
(one that is based on the context _i), when followed by the appropriate i model (one
that is based on the context / ), will contain only signals that can be concatenated
without much need for smoothing.

HMMs in which the hidden units are phonemes in two-sided phoneme contexts
are called triphone models (the name is somewhat misleading in that the units are sin-
gle phones, restricted to particular contexts, rather than sequences of three phones)
and will contain, if there were n phonemes, no more than n3 hidden units, and possi-
bly significantly fewer if phonotactic regularities rule out many cases of phoneme b
appearing in context a_c. State of the art systems extend this method to quinphones
(phonemes in the context of two phonemes on each side) and beyond, using cross-
word contexts where necessary.

Starting with Bloomfield, a great deal of effort in mathematical linguistics has
been devoted to defining models that explicate the relation between the low-level
(continuous, phonetic, meaning-preserving) and the high-level (discrete, phonologi-
cal, meaning-changing) items and processes involved in speech. But there are some
persistent difficulties that could not be solved without a full appreciation of the vari-
ability of the system. A triphone or quinphone model will account for a great deal of
this variability, but even a cursory look at Fig. 8.1 makes it evident that other sources,
in particular the identity of the speaker, will still contribute significant variability
once contextual effects are factored out. Also, it is clear that steady-state vowels are
more of an idealization than typical speech samples: major spectral shifts occur every
5-10 milliseconds, and windows that contain no such shifts are a rarity. This problem
is to some extent mitigated by adding delta (first derivative) and delta delta (second
derivative) features to the basic feature set (Furui 1986), since this will re-emphasize
the spectral shifts that the original features may dampen.

The most natural probabilistic model of emission is a normal distribution, where
a single sample acts as the mean pu, and all samples are assigned probabilities in
accordance with the density function
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where R is the N-dimensional covariance matrix that determines the distribution. In
the simplest case, N = 1; i.e. there is a single measurable parameter that character-
izes every sample. Ideally, this is what we would like to see e.g. for tone, which is
determined by a single parameter FO. But when we measure FO for H (phonologi-
cally high tone) and L (phonologically low tone) syllables, we obtain two distribu-
tions that are nearly identical, with neither the means g and py, nor the variances
og and oy, showing marked differences. The reason for this is that tonal languages
show a steady, cumulative lowering of FO called downdrift, which obscures the dif-
ferences between H and L tones on average. At any given position, in particular
sentence-initially, the differences between H and L produced by the same speaker
are perceptible, but averaging speakers and positions together blurs the distinction
to such an extent that separation of H and L by unsupervised clustering becomes
impossible. This is not to say that the distinction cannot be captured statistically, e.g.
by focusing on the phrase-initial portion of the data, but rather to emphasize that
our current techniques are often insufficient for the automatic discovery of structure
from the raw data: unless we know about downdrift, there is no reason to inspect the
phrase-initial portion of the data separately.

This is not to say that unsupervised, or minimally supervised, clustering tech-
niques have no chance of obtaining the correct classes, at least if the data are pre-
sented clearly. For example, if we restrict attention to steady-state vowels with unam-
biguous pronunciation and a homogeneous set of speakers (adult males), the approx-
imate (F1, F2, F3) centroids for the ten vowels measured by Peterson and Barney
(1952) can be found using just the fact that there are exactly ten clusters to be built
(Kornai 1998a). But to accommodate cases of major allophonic variation, such as
trilled vs. tapped r, distinct Gaussians must be assigned to a single phoneme model.
In this case, we talk about mixture models because the density function describing the
distribution of data points belonging to a single phoneme is the mixture (weighted
sum) of ordinary Gaussians. By using a large number of mixture components, we
can achieve any desired fit with the training data. In the limiting case, we can fit a
very narrow Gaussian to each data point and thereby achieve a perfect fit.

The number of Gaussians that can be justified is limited both by the MDL prin-
ciple (see Section 7.3) and by the availability of training data. If we are to model
n3 hidden units (triphones), each with N parameters for the mean and N(N + 1)/2
for variances and covariances, using m mixture components will require a total of
O(n3N?m/2) parameters. With typical values like n = 50, N = 40, m = 10, this
would mean 10° parameters. Of the many strategies used for reducing this number,
we single out the use of diagonal models where only the variances are kept and the
covariances are all set to zero. This will reduce the parameter space by a factor of
N/2 at minimal cost since the covariances refer to different dimensions of a highly
compressed (mel cepstral) representation whose individual components should al-
ready be almost entirely uncorrelated. Another method is to use only a limited num-
ber of Gaussians and share these (but not the mixture weights) across different hidden
units. This is called a tied mixture model (Bellegarda and Nahamoo 1990). Tying the
parameters and reducing the number of Gaussians is particularly important in those
cases where not all phonotactically permissible triphones occur in the training data.



238 9 Speech and handwriting

Another important approach to reducing variation is based on speaker adap-
tation. The Peterson-Barney data already show clearly the effects of having men,
women, and children in the sample, and indeed training separate models for men
and women (Nishimura and Sugawara 1988) is now common. If there are separate
mixture components for men and women, it makes eminent sense to deploy selection
strategies that use some short initial segment of speech to determine which compo-
nent the data fits best and afterwards suppress the mixtures belonging in the other
component or components.

Speaker adaptation can also work by noting the characteristic differences be-
tween the speech of the current speaker and those whose speech was used to train
the model, and employ some transformation 7! to the incoming speech or, alter-
nately, applying 7 to the model data, as a means of achieving a better fit between the
two. The former method, e.g. by the normalization of cepstral means, is used more
when the variation is due to the environment (background noises, echoes, channel
distortion), while the latter is used chiefly to control variability across speakers and
to some extent across dialects (especially for nonnative speakers).

Adapting the variances (and covariances, if full covariance models are used) is
less important than adapting the means, for which generally T is chosen as an affine
transform x — xA+b, and the new means are computed by maximum likelihood lin-
ear regression (MMLR; see Leggetter and Woodland 1995). A more naturalistic, but
not particularly more successful, method is vocal tract length normalization (VTLN,
see Wakita 1977), where the objective is to compensate for the normal biological
variation in the length of the vocal tract. Altogether, the naturalistic model remains
a source of inspiration for the more abstract direct approach, but the success of the
latter is no longer tied to progress in articulatory or perceptual research.

9.3 Handwriting and machine print

In dynamic OCR, we can be reasonably certain that the input the system receives is
writing, but in image-based OCR the first task is page decomposition, the separation
of linguistic material from photos, line drawings, and other nonlinguistic informa-
tion. A further challenge is that we often find different scripts, such as Kanji and
Kana, or Cyrillic and Latin, in the same running text.

The input is generally a scanned image, increasingly available in very high res-
olution (600 dpi or more) and in full (4 bytes per pixel) color. Uncompressed, such
an image of a regular letter-size page would take up over 130 MB. The naturalistic
program would suggest applying algorithms of early vision such as edge detection,
computation of optical flow, lightness, albedo, etc., to derive representations more
suitable for page decomposition and character recognition. However, practical sys-
tems take the opposite tack and generally begin with a variety of data reduction steps,
such as downsampling, typically to fax resolution (200 dpi horizontal, 100 dpi verti-
cal) and binarization; i.e. replacing color or grayscale pixel values by binary (black
and white) values. After these steps, a typical uncompressed image will be over 1.8
MB, still too large for fax transmission of multipage documents.
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Here we describe the G3 (CCITT Group 3) standard in some detail because it
illustrates not only the basic ideas of Huffman coding (see Section 7.1) but also the
distance between theoretical constructs and practical standards. Each line is defined
as having 1728 binary pixels (thus somewhat exceeding the 8.5 inch page width used
in the United States at 200 dpi) that are run-length encoded (RLE). In RLE, instead
of transmitting the Os and 1s, the length of the alternating runs of Os and 1s get
transmitted. In the G3 standard, length is viewed as a base 64 number. For shorter
runs, only the last digit (called terminating length in this system) gets transmitted, but
for longer runs, the preceding digit (called the make-up) is also used. Since the length
distribution of white and black runs differs considerably, two separate codebooks are
used. Terminating length and make-up codes jointly have the prefix-free property
both for white and black, but not for the union of the two codebooks. The following

terminating length and make-up codes are used:

term. white black| term. white black |make
length code code|length code code| up white black
0 00110101 0000110111 32 00011011 000001101010
1 000111 010 33 00010010 000001101011| 64 11011 0000001111
2 0111 11 34 00010011 000011010010| 128 10010 000011001000
3 1000 10 35 00010100 000011010011| 192 010111 000011001001
4 1011 011 36 00010101 000011010100 256 0110111 000001011011
5 1100 0011 37 00010110 000011010101| 320 00110110 000000110011
6 1110 0010 38 00010111 000011010110 384 00110111 000000110100
7 1111 00011 39 00101000 000011010111| 448 01100100 000000110101
8 10011 000101 40 00101001 000001101100 512 01100101 0000001101100
9 10100 000100 41 00101010 000001101101| 576 01101000 0000001101101
10 00111 0000100 42 00101011 000011011010 640 01100111 0000001001010
11 01000 0000101 43 00101100 000011011011| 704 011001100 0000001001011
12 001000 0000111 44 00101101 000001010100 768 011001101 0000001001100
13 000011 00000100 45 00000100 000001010101| 832 011010010 0000001001101
14 110100 00000111 46 00000101 000001010110 896 011010011 0000001110010
15 110101 000011000 47 00001010 000001010111| 960 011010100 0000001110011
16 101010 0000010111 48 00001011 000001100100 1024 011010101 0000001110100
17 101011 0000011000 49 01010010 000001100101 | 1088 011010110 0000001110101
18 0100111 0000001000 50 01010011 000001010010| 1152 011010111 0000001110110
19 0001100 00001100111 51 01010100 000001010011| 1216 011011000 0000001110111
20 0001000 00001101000 52 01010101 000000100100| 1280 011011001 0000001010010
21 0010111 00001101100 53 00100100 000000110111| 1344 011011010 0000001010011
22 0000011 00000110111 54 00100101 000000111000| 1408 011011011 0000001010100
23 0000100 00000101000 55 01011000 000000100111| 1472 010011000 0000001010101
24 0101000 00000010111 56 01011001 000000101000| 1536 010011001 0000001011010
25 0101011 00000011000 57 01011010 000001011000| 1600 010011010 0000001011011
26 0010011 000011001010 58 01011011 000001011001| 1664 011000 0000001100100
27 0100100 000011001011 59 01001010 000000101011| 1728 010011011 0000001100101
28 0011000 000011001100 60 01001011 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111

In order to ensure that the receiver maintains color synchronization, all lines must be-
gin with a white run length code word (if the actual scanning line begins with a black
run, a white run length of zero will be sent). For each page, first end of line (EOL,
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000000000001) is sent, followed by variable-length line codes, each terminated by
EOL, with six EOLSs at the end of the page. On the average, G3 compression reduces
the size of the image by a factor of 20.

Exercise 9.4 Research the CCITT Group 4 (G4) standard, which also exploits some
of the redundancy between successive lines of the scanned image and thereby im-
proves compression by a factor of 2. Research JBIG and JBIG2, which generally
improve G4 compression by another factor of 4.

Since the black and white runs give a good indication of the rough position of content
elements, the first step of page decomposition is often performed on RLE data, which
is generally sufficient for establishing the local horizontal and vertical directions and
for the appropriate grouping of titles, headers, footers, and other material set in a font
different from the main body of the text. Adaptation to the directions inherent in the
page is called deskewing, and again it can take the form of transforming (rotating or
shearing) the image or transforming the models. The tasks of deskewing and page
decomposition are somewhat intertwined because the simplest page decomposition
methods work best when the image is not skewed. Unlike in speech recognition,
where models that incorporate an explicit segmentation step have long been replaced
by models that integrate the segmentation and the recognition step in a single HMM
search, in OCR there is still very often a series of segmentation steps, first for text
zones (i.e. rectangular windows that contain text only), then for lines, and finally for
characters.

The search for text zones can proceed top-down or bottom-up. In the top-down
approach, we first count the black pixels in each row (column), obtaining a column
(row) of blackness counts known as the projection profiles (see Wang and Srihari
1989). These are generally sufficient for finding the headers and footers. Once these
are separated out, the vertical profile can be used to separate text columns, and on
each column horizontal profiles can be used to separate the text into lines. Besides
sensitivity to skew, a big drawback of the method is that it presumes a regular, rect-
angular arrangement of the page, and more fancy typography, such as text flowing
around a circular drawing, will cause problems. In the bottom-up approach, we be-
gin with the smallest elements, connected components, and gradually organize them
or their bounding boxes (the smallest rectangle entirely containing them) into larger
structures. By searching for the dominant peak in a histogram of vectors connecting
each component to its nearest neighbor, the skew of the document can be reliably
detected (Hashizume et al. 1986, O’Gorman 1993). Both the identification of con-
nected components and the finding of nearest neighbors are computationally very ex-
pensive steps, and once we are willing to spend the resources, other skew-insensitive
methods of segmenting text from images, such as the use of Gabor filters (Jain and
Bhattacharjee 1992) are also available.

Besides deskewing, there are several other normalization steps performed on
the entire image as needed; for example, xeroxing or scanning thick, bound docu-
ments introduces perspective distortion at the edge of the page (see Kanungo et al.
1993), and the vibrations of the scanner can cause blurring. Detection and removal
of speckle noise (also known as salt-and-pepper noise because noise can take the
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form of unwanted white pixels, not just black) is also best performed on the basis
of estimating the noise parameters globally. Other normalization steps, in particular
removing distortions in the horizontal baseline caused by a loose paper forwarding
mechanism (common in mechanical typewriters and low-quality scanners/faxes), are
better performed line by line.

To the extent that small skew (generally within one degree) and simple rectangu-
lar page layout are valid assumptions for the vast majority of holdings in digital li-
braries, the less expensive top-down algorithms remain viable and have the advantage
that finding text lines and characters can generally proceed by the same steps. For
machine-printed input and for handprint (block letters, as opposed to cursive writ-
ing), these steps reduce the problem to that of isolated character recognition. Here
the dominant technology is template matching, typically by neural nets or other train-
able algorithms. Since direct matching of templates at the bitmap level, the method
used in the first commercially available OCR system in 1955, works well only for
fixed fonts known in advance, attention turned early on to deriving a suitable set of
features so that variants of the same character will map to close points in feature
space.

For isolated characters, the first step is generally size normalization; i.e. rescaling
the image to a standardized window. Since this window is typically much smaller
than the original (it can be as small as 5 by 7 for Latin, Cyrillic, and similar alphabets,
16 by 20 for Oriental characters), the new pixels correspond to larger zones of the
original bounding box. The new pixel values are set to the average blackness of each
zone, so that the rescaled image will be grayscale (4-8 bits) even if the original was
binary (Bokser 1992). Because characters can vary from the extremely narrow to
the extremely broad, the aspect ratio of the original bounding box is generally kept
as a separate feature, together with the position of the bounding box relative to the
baseline so as to indicate the presence or absence of ascenders and descenders.

Besides absolute size, we also wish to normalize stroke width in handwritten
characters and font weight in machine print. An elegant, and widely used, technology
for this is mathematical morphology (MM), which is based on the dual operations
of erosion and dilation. We begin with a fixed set B C R? called the structuring
element, typically a disk or square about the origin. The reflection of B, denoted B,
is defined as {—x|x € B} — for the typical structuring elements, symmetrical about
the origin, we have B = B. The translation By of B by vector x is defined as
{b+x|b € B}. The dilation A ® B of A by B is defined as {x|l§x N A # @}, and the
erosion A © B of A by B is defined as {x|Bx C A}. Two MM operations defined on
top of these are the opening 4 o B of A by B given by (4 & B) & B and the closing
A e B of Aby B given by (A & B) & B. Finally, the boundary dA4 of A according
to B is defined as A \ (A © B).

What makes MM particularly useful for image processing is that all the opera-
tions above remain meaningful if the sets A and B are composed of pixels (elements
of a tiling of R?). For example, if the structuring element B is chosen to be slightly
smaller than the regular printed dot (both periods at sentence end and dots over is),
the operation (Ao B)e B will filter out all salt-and-pepper noise below this size while
leaving the information-carrying symbols largely intact. By iterated erosion, we can
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also obtain the skeleton of an image, defined as the set of those points in the image
that are equidistant from at least two points of the boundary. While in principle the
skeleton should be an ideal replacement of characters with greater stroke width, in
practice skeletonization and all forms of thinning are quite sensitive to noise, even
after despeckling. Noise is also a persistent problem for approaches based on chain
codes that express a simply connected two-dimensional shape in terms of its one-
dimensional boundary.

In vertex chain coding, we apply the same principle to triangular, rectangular,
and hexagonal tilings: we pick any vertex of the polygon that bounds the object and
count the number of pixels that are connected to the boundary at that vertex. The
total chain code is obtained by reading off these numbers sequentially following the
polygon counterclockwise. Several chain codes, all cyclic permutations of the same
string, could be obtained, depending on the vertex at which we start. For uniqueness,
we pick the one that is minimal when interpreted as a number. This will make the
code rotation invariant.

Chain codes offer a relatively compact description of simply connected binary
images, and efficient algorithms exist to compute many important properties of an
image (such as its skew; see Kapogiannopoulos and Kalouptsidis 2002) based on
chain codes for all connected components. However, for isolated character recogni-
tion, chain codes are very brittle: many characters have holes, and features such as
‘being n times connected’ (and in general all Betti numbers and other topological
invariants) are greatly affected by noise. In the analysis of handwriting, it is a par-
ticularly attractive idea (already present in Eden 1961) to build a naturalistic model
along the same lines we were all taught in first grade: ¢ is a straight line down, curve
to the right, cross near the top. Noise stands in the way of such structural decom-
position approaches to a remarkable degree, and simple, robust features such as the
height contour, which is obtained from a line by computing the highest and the low-
est black pixel in each column of pixels, turn out to be more helpful in OCR even
though they clearly ignore structural features of the original such as loops.

Therefore it is particularly important to look for noise-robust features that pre-
serve as many of the desirable invariance properties of chain codes as feasible.
After size normalization, the character image fits in a fixed domain and can be
thought of as a function f(x, y) with value zero outside e.g. the unit circle (which
is mathematically more convenient than a rectangular bounding box). A typical
normalization/feature extraction step is computing the central moments ji,, de-
fined in the usual manner by computing the x and y directional means X =
I xf(x,y)dxdy/ [ f(x,y)dxdy and y = [[ yf(x,y)dxdy/ [[ f(x,y)dxdy
and defining

lipg = // (=P - e —Ddy T (9.30)

Clearly, the central moments are invariant under arbitrary translation. Since the
moment-generating function and the two-dimensional Fourier transform of f are
essentially the same complex function viewed on the real and the imaginary axes, it
comes as little surprise that Fourier techniques, both discrete and continuous, play
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the same pivotal role in the two-dimensional (handwriting signal) case that they have
played in the one-dimensional (speech signal) case.

To obtain features that are also invariant under rotation, we can express f in
terms of any orthogonal basis where rotation invariance is easily captured. One stan-
dard method is to define the n, m radial polynomials R, (p), where n is the order
of the polynomial, m is the winding number, n — |m| is assumed even, |m| < n by

n—|m|/2 n—2s

B e (n—s)p
Rum(p) = s; =D S!(%W_sy("%lml_s)!

(9.31)

and define the n, m Zernike basis function V,,,,, (0, 0) as V(0. 0) = Rum(p)e'™?.
These functions are orthogonal on the unit disk, with

/] Vo G ) Vg (X, )dxdy = ——8ppbmg 932)
x2+y2<1

The Zernike moment A,,, of a function f (already assumed size and translation
normalized) is given by

b4
n+1

A = // £ ) Vam (- B)dxdy 9.33)
x2+y2<1

If g(p, 0) is obtained from f(p, 6) by rotation with angle « (i.e. g(p,0) = f(p,0 —
«)), the n, m-th Zernike moment of g is A,,e~'™%, where A, was the n,m-th
Zernike moment of f. Thus, the absolute values | A, | are rotation invariant. Notice
that fully rotation-invariant features are not ideally suited for OCR — for example,
6 and 9 would get confused. A more important goal is the normalization of slant,
both for the recognition of handwriting and for machine print that contains italicized
portions. Projection profiles, taken in multiple directions, give a good indication of
writing slant and are often used.

Altogether, the computation of features for isolated characters often involves a
mixture of normalization and feature extraction steps that may end up producing
more data, as measured in bits, than were present in the original image. This is par-
ticularly true in cases such as Zernike moments or other series expansion techniques
(Fourier, wavelet, and similar techniques are often used), which could lead to a large
number of terms limited only by two-dimensional versions of Theorem 9.1.1. In gen-
eral, the goal is not simply data reduction but rather finding the features that provide
good clustering of the data for VQ and other techniques the way Itakura-Saito diver-
gence does for speech signals.

Typically, data reduction is accomplished by Karhunen-Loéve transformation,
also known as principal component analysis (PCA). We begin with a set of (real or
complex) feature vectors x; (I < i < n) with some high dimension N and seek to
find the projection P to d-dimensional space that retains as much of the variance in
the data as possible. To this end, we first compute the (empirical) mean of the data
setX = % >, x; and subtract it from all feature vectors (in practical applications,
the variances are also often normalized). The covariance matrix of the (now zero
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mean) vectors is symmetric (or Hermitian, if complex features are used) and thus
has orthogonal eigenvectors. These are ordered according to decreasing size of the
eigenvalues, and only the first d are kept. P projects the (zero mean) data on the
subspace spanned by these eigenvectors.

If the task is recognition, it is at least in principle possible for important infor-
mation to be lost in PCA since the variability according to some critical feature may
be low. To account for this possibility, sometimes linear discriminant analysis (LDA;
see Fisher 1936, 1937) is used, but the improvement over PCA is generally slight
when LDA is just a preprocessing stage for some more complex recognition strategy
such as nearest neighbor classification. The advantage of LDA is in the fact that it
will derive a robust classifier in its own right and the training process, which uses
only the first and second moments of the distributions of x;, is very fast.

Exercise 9.57+ Develop a handprint classifier using the NIST isolated character
database available at http://www.nist.gov/srd/nistsdl9.htm. Com-
pare your results with the state of the art.

Most classification methods that work well for machine print and handprint run into
serious problems when applied to cursive writing because in the character identifica-
tion stage it is very hard to recover from errors made in the segmentation stage. The
filter- and projection-based page decomposition methods discussed here generalize
reasonably well to cursive writing as far as segmentation into text blocks and lines
is concerned, but segmenting a line into separate words and a word into separate
characters based on these and similar methods is prone to very significant errors. For
cursive writing, the segmentation problem must be confronted the same way as in
speech recognition. To quote Halle and Stevens (1962:156),

The analysis procedure that has enjoyed the widest acceptance postulates
that the listener first segments the utterance and then identifies the individual
segments with particular phonemes. No analysis scheme based on this prin-
ciple has ever been successfully implemented. This failure is understandable
in the light of the preceding account of speech production, where it was ob-
served that segments of an utterance do not in general stand in a one-to-one
relation with the phonemes. The problem, therefore, is to devise a proce-
dure which will transform the continuously-changing speech signal into a
discrete output without depending crucially on segmentation.

To this day, we do not have successful early segmentation, and not for lack of trying.
Until the advent of HMMs, there were many systems based on the segmentation-
classification-identification pipeline, but none of them achieved performance at the
desired level. Today, many of the design features deemed necessary by the prescient
Halle-Stevens work, such as the use of generative language models for the lexicon
and larger utterances or the pruning of alternatives by multiple passes, are built into
HMMs, but the main strength of these systems comes from two principal sources:
first, that the recognition algorithm explores segmentation and classification alter-
natives in parallel, and second, that the system is trainable. Parallelism means that
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HMMs are capable of considering all segmentation alternatives (hypothesizing ev-
ery new frame as potentially beginning a new phoneme) without unduly burdening a
separate phoneme-level recognizer. Perhaps ironically, the best segmentation results
are the ones obtained in the course of HMM recognition: rather than furnishing an
essential first step of analysis, segment boundaries arise as a by-product of the full
analysis.

9.4 Further reading

Viewed from a contemporary perspective, the great bulk of (digital) signal process-
ing knowledge rests on a clean, elegant foundation of 19th century complex function
theory and should be very accessible to mathematicians once the terminological and
notational gap between mathematics and electrical engineering is crossed.! Yet the
rational reconstruction of the fundamentals presented here has little in common with
the actual historical development, which is better understood through major text-
books such as Flanagan (1972) (for analog) and Rabiner and Schafer (1978) (for
early digital). In particular, Theorem 9.1.1 goes back to Whittaker (1915) but has
been rediscovered many times, most notably by Shannon and Weaver (1949).

In the theory of time series analysis, Padé approximation is known as the au-
toregressive moving average (ARMA) model, with the all-pole case referred to as
autoregressive (AR) and the all-zero case as moving average (MA); see e.g. Box and
Jenkins (1970). In digital signal processing, there are a wide variety of windowing
functions in use (see e.g. Oppenheim and Schafer 1999), but for speech little im-
provement, if any, results from replacing the standard Hamming window by other
windowing functions. The importance of the fast Fourier transform can hardly be
overstated — see Brigham (1988) for a textbook devoted entirely to this subject. Even
though harmonic analysis is a natural framework for dealing with speech, algorithms
that relied on actually computing Fourier coefficients were considered impractical
before the modern rediscovery of the FFT (Cooley and Tukey 1965). We mention
here that the FFT was already known to Gauss (see Heideman et al. 1984).

The standard introduction to homomorphic speech processing is Schafer and Ra-
biner (1975), but the presentation here follows more closely the logic of Makhoul
(1975). Cepstra, and the attendant syllable-reversal terminology, were introduced in
Bogert et al. (1963); see also Childers et al. (1977). Mel-cepstral features have ef-
fectively replaced direct (time domain) LPC features, but linear prediction, either
applied in the quefrency domain or directly (as in the GSM 6.10 standard), remains
a standard data compression method in modern audio transmission.

The savings effected by the fast algorithm of Exercise 9.2 are trivial by today’s
standards since p is generally on the order of 10!, so p3 gives less than 10° in-
structions per second, while the chips embedded in contemporary cell phones are
increasingly capable of hundreds of MIPS. Note, however, that in the image do-
main a variety of operations, such as adaptive binarization (setting the binarization

1 In particular, in engineering works we often find the imaginary unit ; denoted by j.
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threshold according to local conditions; see Kamel and Zhao 1993), are still quite
expensive.

For an overview of unsupervised clustering, see Everitt (1980) and Duda et al.
(2000 Ch. 10), and for the supervised case, see Anderberg (1973). For Itakura-Saito
divergence, see Itakura (1975), and for its relation to Bregman divergences, see
McAulay (1984), Wei and Gibson (2000), and Banerjee at al (2005). For optimal
decorrelation of cepstral features, see Demuynck et al. (1998). Tying techniques,
which are critical for training high-quality HMMs, are discussed further in Jelinek
(1997 Ch. 10). For speaker adaptation, see Richard Stern’s survey article on robust
speech recognition in Cole (1997, with a new edition planned for 2007).

Although somewhat dated, both Bunke and Wang (1997) and O’Gorman and
Kasturi (1995) offer excellent introductions to the many specialized topics related
to OCR. For an overview of the early history, see Mori et al. (1992). For adaptive
thresholding, see Sezgin and Sankur (2004). For page segmentation, see Antona-
copoulos et al. (2005). Mathematical morphology was invented by Matheron and
Serra (see Serra 1982); for various generalizations, see Maragos et al. (1996). For a
comparison of skeletalization and thinning algorithms see Lee et al. (1991) and Lam
et al. (1992). Chain codes were introduced by Freeman (1961). The vertex chain code
presented here is from Bribiesca (1999).

Moment normalization originated with Hu (1962). Zernike polynomials arise in
the study of wavefronts for optical systems with a central axis (Zernike 1934) and
are widely used in opthalmology to this day. Their use in character recognition was
first proposed in Khotanzad and Hong (1990). For an overview of feature extraction
methods for isolated character recognition, see Trier et al. (1996). PCA and LDA are
basic tools in pattern recognition; see e.g. Duda et al. (2001 Sec. 3.8). For the use of
MMLR in dynamic handwriting recognition, see Senior and Nathan (1997), and for
image-based handwriting recognition, see Vinciarelli and Bengio (2002). The state
of the art in handwriting recognition is closely tracked by the International Workshop
on Frontiers of Handwriting Recognition (IWFHR).

Early systems incorporating explicit rule-based segmentation steps are discussed
in Makhoul (2006) from a historical perspective. In linguistic pattern recognition,
trainability (called adaptive learning at the time) was first explored in early OCR
work (see Highleyman 1962, Munson 1968), but the practical importance and far-
reaching theoretical impact of trainable models remained something of a trade secret
to speech and OCR until the early 1990s, when Brown et al. (1990) demonstrated
the use of trainable models in machine translation. This is not to say that theoretical
linguistics ignored the matter entirely, and certainly the single most influential work
of the period, Chomsky (1965), was very explicit about the need for grammatical
models to be learnable. Until the 1990s, theoretical linguistics focused on the rela-
tionship of learnability and child language development (see e.g. Pinker 1984, 2nd
revised ed. 1996), mostly from the perspective of stimulus poverty, and it took the
clear victory of trainable models over handcrafted rule systems in what was viewed
as a core semantic competence, translation, to bring the pure symbol-manipulation
and the statistical approaches together again (Pereira 2000).



