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Abstract

Statistical, parsing, database, and other methods of
bringing contextual information to bear on the recogni-
tion task are described in a uniform framework in which
the central data structure mediating between the recogni-
tion and the contextual components is a segment lattice,
a directed graph that contains the alternative segments
and their confidence/probability ranking. Explicit mea-
sures of the value of such segment lattices and the cor-
rectness of language models are proposed, and the dom-
inant technologies are critically evaluated.

0 Introduction

Since stand-alone recognition is unlikely to provide
high quality output in the foreseeable future, the over-
all performance of recognition systems will continue to
be critically impacted by the language model. Section 1
of this paper provides a critical overview of the tradi-
tional system architecture in which a language model
component acts as a postprocessor correcting the out-
put of the recognizer, and proposes explicit measures of
the contribution of the components to the reduction of
error rate. Section 2 discusses the more current Hidden
Markov Model (HMM) architecture in which recogni-
tion and language modeling are performed in parallel.
The main bottlenecks identified in this survey appear
in boldface.

1 Language modeling as error correc-
tion

Laboratory systems for the recognition of written or
spoken input were first demonstrated in the fifties, and
as soon as the size of the permitted input exceeded a few
dozen fixed templates, some sort of contextual analysis
component was added (Bledsoe and Browning 1959).
From early on, speech researchers preferred stochastic
models, while in optical character recognition (OCR)
the dominant model was, and to a significant extent
continues to be, lexicon-based. The typical architecture
of such models can be depicted as follows:
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This model has its origins in recognition tasks such
as OCR of programmers’ data entry sheets (Munson
1968, Duda and Hart 1968) where segmentation is not
much of a problem either at the character level (because
evenly spaced ticks are provided on the form) or at the
word level (because whitespaces are trivial to detect).
Fizup was added only in later systems when it became
clear that a simple grid (whith a column of hypotheses
for each input “segment”) can not accomodate segmen-
tation hypotheses of different length. Over the years,
the Fixup component also tended to assume the task
of modeling the error characteristics of the recognizer:
what started with adding an u or an m to the lattice
where the recognizer had i or i was soon followed by
adding ¢ for g and c for o if that was what the recognizer
systematically missed.

There are two basic problems with this architec-
ture but only one of them, combinatorial explosion
has been addressed from the beginning. The language
model can be a simple list of words, a more complex
algorithm dealing with capitalization, affixation, and
other problems of dictionary lookup, or it can be a very
sophisticated parser or database module. But whatever
it is, calls to this component are expensive, and recog-
nition is feasible only if the number of paths through
the segment lattice is kept small. On the other hand,
the recognizer (even after fixup) is not perfect, and if
the correct hypothesis is not output among the alter-
natives, a local error (failure to suggest the correct seg-
ment) becomes a global error (failure to find the cor-
rect string). Therefore the number of alternatives must
be kept high, which creates exponential growth in the
number of paths through the segment lattice. For the
larger part, the history of error correction and language
modeling is the history of fighting against this combi-
natorial explosion.



But there is another, more subtle, problem with the
model depicted above, which became clear only in light
of the experience of speech researchers, and this is the
lack of joint optimization. Broadly speaking, there
is a tunable parameter of each component: the number
of hypotheses N provided by the recognizer, the num-
ber of error patters E considered for substitution by
the fixup, and the aggressiveness of the pruning A in
the search, and in principle we can use something like
gradient descent to find a global optimum in the space
described by N, F, and A. But from a more techni-
cal perspective the parameters are not so easy to set:
the confidences of low probability hypotheses are unre-
liable, the error patterns change with the setting of N,
and controlling A is a complex undertaking which often
involves software engineering decisions that cannot be
implemented as a change to a single numeric parame-
ter. As a result, instead of systematic optimization by
techniques guaranteed to converge, in practice we find
lots of hand-tuning which is both labor-intensive and
liable to miss the real optimum.

To resolve this problem we need to identify and mea-
sure the contribution of each component to the overall
recognition rate. As a first step, let us define a Lan-
guage over a finite alphabet of phonemes or graphemes
(including pause or whitespace) as a function f that
assigns a non-negative probability f(s) to every string
over the alphabet in such a manner that the sum of
these is bounded (can be normalized to 1). To forestall
confusion it should be emphasized that probability is
not meant as a numerical scale of degrees of grammat-
icality: syntactically well-formed strings can have zero
or low probability and syntactically ill-formed strings
can have relatively large probability. The definition of
Language (with capital L) embodies the simplifying as-
sumption that string probabilities are fixed once and
for all, though in estimation tasks it has been often
noted that for low values the static probabilities are
outweighted by context effects. To fix ideas, a Lan-
guage is best thought of as the set of strings that will
be encountered by the recognizer, weighted by the fre-
quency of such encounters. Though hard to measure
or even estimate, this is a static population, fixed once
and for all by the intended application domain.

A Language Model is defined as any combination of
table lookup and other algorithmic procedures that will
assign a non-negative number to each string over the
alphabet. We do not require the sum of these numbers
to converge because we do not wish to exclude those
language models which approximate probabilities by a
zero-one decision but permit an infinite number of valid
strings. Given an alphabet T, a Language f : T* —
R*, a Language Model g : T* — RT, and a precision
e > 0, we define the underestimation error U(e) of g

with respect to f by
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and the overestimation error by
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The impact of such errors on the overall performance
of the system will of course depend on the manner in
which the Language Model is utilized. For example, if
recognition/fixup always returns two strings, the cor-
rect one and a random one, and the LM simply picks
the one with higher probability, a perfect LM (f = g)
will make the right choice with probability one, since
the probability of a random string is zero. However, if
the LM is a parser that accepts (returns the value 1)
for every string of even length, the model will induce
the incorrect choice for all cases where the true can-
didate has odd length while the other hypothesis has
even length. Let us suppose this parser only makes 5%
error because p = > 5, f(s) = .95. Running the
recognizer/fixup without the Language Model means
we have to randomly pick one of two candidates i.e. an
overall recognition rate of 50%. Running with this par-
ticular LM (which will force a random selection only if
both candidates are odd or both are even) improves the
overall recognition rate to 72.5%, which is considerably
better, but somehow less than what we would expect
from a language model that is, after all, 95% correct.
Including the LM remains profitable as long as it ex-
presses a genuine regularity about the Language (for
all Languages with p > .5) but even for the ideal case
where our “grammar” is perfect (p = 1) the error rate
will be 25%.

The above example is somewhat unrealistic: most
recognizers will rank their output or the strings re-
turned by fixup are endowed with some ranking, confi-
dence or probability measure, either on a character by
character basis or as a global measure normalized for
string length. In the absence of a language model all
we can do is pick the highest ranked choice, and I will
define the wvalue of a segment lattice a output by the
recognizer for input s as
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i.e. the probability of picking the string s divided by
the sums of probabilities of picking any of the strings
t. Clearly, if the recognizer returns not only two strings
as above (value .5) but also a ranking that is .95 for
even and .05 for odd strings, the value of the segment
lattice is greatly enhanced (actually to the point that

v(a)



the LM can no longer improve it). Since the segment
grid is a special kind of segment lattice, its value is
defined by the same formula as above. Fixup works well
to the extent it improves the value of the hypotheses
for frequent inputs more than it breaks on infrequent
ones. If the segment lattices before and after fixup are
as and s, fixup brings Y . f(s)(v(8s) — v(as)) ~
> ser- 9(8)(v(Bs) —v(as)) increase in value. Note that
good Language Models can improve things even when
the value of the recognition/fixup contribution is zero
— this will happen any time the LM picks a correct
solution which was not present in the segment lattice.

Let us now turn to cases where the grammar is more
complex. In most applications the dominant problem is
lack of coverage (underestimation) which can be caused
by several factors. First, inappropriate setting of
the alphabet (in OCR, lack of training for certain
symbols) is not at all uncommon. What we call the
Latin alphabet started out as a set of two dozen sym-
bols, and the addition of lowercase only doubled this
number. But over the centuries a considerable number
of special symbols were added for punctuation, math-
ematical symbols, accented, crossed, and other modi-
fications of the existing letters, monetary symbols and
other ideograms like (¢), so in a comprehensive inventory
like Unicode we find several hundred relevant symbols.

Second, typical language models do not express reg-
ularities directly in terms of the underlying alphabet
but rather through the interaction of several strata. It
is assumed that one symbol of the underlying alpha-
bet, namely whitespace, can be used to parse the string
into words over which regularities can be stated more
clearly. Given a base alphabet T, we now have a dic-
tionary V' C T* such that strings of the Language over
T are expressed as strings over V. Further (phrasal,
sentential) strata are often added in the same manner.
There are two problematic assumptions here. First, the
assumption of parsability — typically, dictionaries ig-
nore (mis)hyphenated and runon forms, and if further
strata are added the same assumption is repeated at
the phrasal, sentential, etc. levels. Second, the closed
world assumption that drives the never-ending search
for larger and larger dictionaries, ignoring the simple
fact that in most domains V' can not be expressed as a
finite list. It is not uncommon for hyphenation/runon
problems to cause as much as 5%, and lexical cover-
age problems to cause over 30% of the underestimation
errors of the language model.

To take a Language of medium complexity, US mail
address blocks are ideally composed of NAME, NUMBER,
STREET, CITY, STATE, and ZIP fields, in this order, and
a simple unigram Language Model per field is not hard
to build. The overall model then takes the probability
of an address block to be the product of the probabili-
ties of the entries within a field, ignoring the relation-

ship between city, state, and zip. But if we take names
to be single entries, Turing-Good estimates on cover-
age will show that over 40% of names will be missed
even with lists comparable in size to the biggest dictio-
naries in use (several hundred thousand entries). Thus
we are forced to parse names into several fields such as
TITLE, FIRST-NAME, MIDDLE-NAME, and LAST-NAME,
and some of these fields can now be empty. The dictio-
nary coverage problem is less acute within these fields
(though it is still hard to get better than 95% coverage
on first names and better than 90% on last names) but
there is a price to pay both in terms of overestimation
(Latino first names with Vietnamese last names are pre-
dicted with higher probability than what the Language
actually has) and in terms of pattern complexity to
which we turn now.

While the regular English pattern (TITLE) (FIRST-
NAME) (MIDDLE-NAME) LAST-NAME is indeed the dom-
inant one in the Language of personal names with over
60% of the cases, it is far from the only one. There
are GENERATION markers such as Jr., 3rd, and so on,
which can be added to the above pattern without break-
ing the linear order. But there are other patterns, such
as Smith, John (often without explicit comma) or John
cardinal O’Connor, which cannot be absorbed in the
dominant pattern and will require their own separate
rule. Also, dominant/frequent patterns of other lan-
guages will appear with lesser, but not negligible fre-
quency: C. de la Vallée-Poussin, B. van der Waer-
den, and so on. Finally, subfields can often be iterated
(Herr Prof. Dr.) or coordinated (Commodore and Mrs.
Smith, H. Rodham Clinton). Anybody who has ever
written a parser for sublanguages will also know that
some of the Language is just plain wrong: misspelled,
scrambled, semantically erroneous. It is an important
design decision whether we incorporate such ungram-
matical entries in our Language Model and if not,
whether we prune such entries aggressively even if the
recognizer/fixup module returned high confidence re-
sults.

2 Language modeling as constraining
the search space

Most of the key problems with the standard meth-
ods of parsing natural language input are already visible
on the limited domain of address blocks: weak dictio-
nary coverage, failures of parsing into higher strata el-
ements, endemic pattern complexity, and ungrammat-
ical input all exact their toll on the Language Model.
In addition, the dominant technology of parsing, us-
ing (augmented) context-free grammars, leads to over-
estimation problems by the very nature of context-free
rules. If we introduce very narrow dictionary classes like



LATINO-FIRST-NAME and VIETNAMESE-LAST-NAME we
can avoid the overestimation problem discussed above,
but obtaining reliable estimates of unigram prob-
abilities will require several orders of magnitude more
data. We can have a good idea about the relative fre-
quency of Jack or Bill among FIRST-NAMEs but it will
require more data to find out their frequencies among
CHINESE-FIRST-NAMES or OTHER-FIRST-NAMES.

These problems, coupled with the somewhat diffuse
but often quite palpable desire to “fire a linguist and
increase productivity” led, in the past decade, to the
widespread adaptation of a simpler (finite state as op-
posed to context free) class of Language Models. Orig-
inally developed by Markov (1913) for the purpose of
studying word frequency distributions, Markov chains
came to be viewed as a realistic alternative to more
complex models for several reasons. First, such models
were easy to integrate into the Hidden Markov Model
(HMM) paradigm that dominated speech research since
the eighties. Second, automatic training algorithms
that created a Language Model with little or no hu-
man intervention were available, replacing the labor-
intensive process of writing a parser. Third, the Marko-
vian assumption leads to models that can be directly
used for left-to-right pruning.

As we noted in Section 1, calls to a parser are ex-
pensive, and in a typical context-free parser the num-
ber of steps grows with the square of input length.
Multistratal analysis and the presence of optional el-
ements means that the easiest strategy is submitting
the whole string (often spanning several hundred sym-
bols from the base alphabet) for parsing, so the fun-
damental nonlinearity of the algorithm becomes a real
issue. Although island parsing techniques (see Carroll
1983) can be used to exploit the fact that the gaps be-
tween well-recognized segments are often much shorter,
the worst-case scenario is found too often for this to
be a generally effective strategy. Exploiting the fact
that strings in the segment lattice are similar
is a nontrivial task in any case, and here the matter
is complicated by the requirement of carrying along
and updating the probability/confidence rank-
ing. Finally, Language Models tend to make heavy
use of string distance calculations (which provide the
only means of recovering from errors of the recognizer
if fixup fails) and the integration of string distance
calculations with context-free parsing techniques
remains problematic.

This state of affairs is to be contrasted to the situa-
tion in which left-to-right pruning of the segment lattice
is possible. In general, a Language Model as defined in
Section 1 is not suitable for left-to-right pruning, be-
cause in order to discard some initial segment s we
must know not only that f(s) is sufficiently low but
also that for every ¢, f(st) will also be sufficiently low.

However, with a Markovian assumption we can esti-
mate how much the overall probability of a string can
improve by adding further segments to it, so hypothe-
ses can be discarded in a left-to-right, limited looka-
head fashion (typically implemented as dynamic pro-
gramming). The maintenance/update of probabilities
is done at a low level, and the incorporation of string
distance calculations is considerably simplified.

Finally it should be emphasized that a conceptually
simple method of measuring the relative contributions
of the components, based on considerations of mutual
information and entropy (Jelinek 1990) is available. In
the general case discussed in Section 1, no such model
is available, and a second look at our original example
will show why. In that example, the recognizer/fixup
has exactly one bit of information deficiency since get-
ting a single bit of extra information from some oracle
would enable us to choose the good candidate string.
The output of the LM, however, can have arbitrarily
large information deficiency: in the p = 1 case it will
be correct 75% of the time and will require O(logr)
bits in the remaining 25% of the time, where r is the
cardinality of the alphabet T. The mutual information
between our simple LM and the Language will also de-
pend on the cardinality of the alphabet. Generalizing
the information-theoretic model to the context-
free case remains a challenge.

Now that we have discussed the considerable ad-
vantages of Markov models over the parsing/database
conception of Language Models we can turn to a dis-
cussion of their limitations. The first objection, raised
originally in Chomsky (1957), is that the structure of
Language is more complex than what can be expressed
by a Markovian model. Though this became the ac-
cepted wisdom in theoretical linguistics, in the prob-
abilistic framework of Languages the force of the ar-
gument is limited inasmuch as the overall frequency
of deeply center-embedded constructions is very small
compared to underestimation errors coming from other
sources. The more practical arguments about training
set size raised in Miller and Chomsky (1963) retain a
great deal of validity, especially when applied to 4th and
higher order Markov models, but for most applications
third order models, by now well within the capabili-
ties of mid-range workstations and high-end PCs, are
sufficient.

A more relevant objection is that finite-state mod-
els do not return any structure of significance.
For information retrieval and other tasks with a con-
siderable semantic component, such intermediary struc-
tures as parse trees, dependency graphs, or attribute-
value matrices are essential, and if recognition can only
return (tagged) strings a more sophisticated parser will
have to be run in a subsequent module, often duplicat-



ing work, such as dictionary lookup, across the compo-
nents. However, given that calls to the parser are both
expensive and unpredictable (since the same text can be
fed into very different parsers depending on the nature
of the application) this is not necessarily a drawback.
Some data structure mediating between the recognizer
and the semantics is necessary anyway, and (tagged)
strings provide a natural interface between the two, es-
pecially as data in this format, namely (rich) ascii text,
is widely available independent of the availability of rec-
ognizers.

A closely related problem is the lack of seman-
tic checking in statistical systems which, by their
nature, tend to be “soft fail” algorithms that will re-
turn non-zero probabilities even for ill-formed entries.
For purposes like routing mail semantic checking is in-
deed desirable, but there are other applications (such
as documents with legal implications) where scrupu-
lous adherence to the actual input, independent of its
semantic coherence, is of great importance. For exam-
ple, low-level correction of tax returns with errors in
the arithmetic would be highly undesirable — what is
desirable is letter-perfect recognition with some post-
processor that flags such errors. It should be added
here that probability values of 1 cause no special prob-
lems for the statistical model, so deterministic choices
can still be made wherever a closed world assumption
is realistic.

To use again our example of address blocks, let us
suppose we have a database of (CITY STATE ZIP) triples.
We can compile a large network that will contain those
and only those strings which make up valid triples, and
in fact a great number of database search engines use
exactly such networks. What this technology misses is
the ability to speed up searches by hashing and other
non-local techniques, but it has the advantage of closure
under substitution: networks of networks are networks.
This means that we can build a network for each city
(comprising the alternative spellings of, say, Winston-
Salem) a network for each state (comprising the alter-
native spellings NC, North Carolina, N.C., and so on)
and a network for each 5-digit number which is a valid
zip code, and then link copies of these together in a
single large network. Unparsed querying, i.e. the
ability to integrate queries based on overlapping sub-
strings but directed at different databases, is an unre-
solved problem outside the finite state domain. To the
extent that the basic segmentation problem can be
kept under control, fast search techniques like hashing
offer the promise of outperforming Markovian networks,
but the combinatorial explosion discussed at the outset
reappears at higher strata as soon as we need to parse
the input before we can query the Language Model.

Let me conclude with a point seldom addressed in
an engineering context, language generality. Most

engineers like to maintain that working on English is
not only necessary (since that is where the market is)
but also sufficient, because “all the problems that oc-
cur in natural language also occur, though perhaps in
a more limited form, in English”. Nothing could be
farther from the truth. Much as an anatomist working
only with the male of our species would have no clue
what nipples are for and could not even guess the ex-
istence of an organ like the womb, engineers narrowly
focusing on English fail to see the complexity of impor-
tant problems. I have argued elsewhere (Kornai 1992)
that the complexity of the machine translation task is
bound from below by the complexity of the morpholog-
ical analysis task. For English, morphological analysis
(removal of -ing, ed, s) can be performed in a few dozen
lines of code and a few small exception tables. For
many other languages inside and outside the Indoeu-
ropean family, this is a task of tremendous complexity
from which the issue of dictionary lookup cannot at all
be separated. For this reason alone, database technol-
ogy is unlikely to provide the right tools for Language
Modeling.
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