
T. Toffoli (ed.): submitted to Int. J. Theor. Physics

for a special issue on the Digital Perspectives workshop, Washington DC, July 2001.

Explicit finitism

András Kornai
Metacarta Inc., 126 Prospect St., Cambridge MA 02139

andras@kornai.com

1 Introduction

Recently Lloyd[2] established 10120 bits as an upper bound for the storage
capacity of the universe. Mathematicians and computer scientists tend
to be dismissive about such notions of a computationally closed universe,
comparing the issue to one of characterizing the set of functions computable
if you are given a roomful of nand gates. In this paper we show how the
problem can be stated in a more interesting form, as being about sequences
Ji of subsets of the real numbers tending to a limit J ⊂ R, and pose some
open questions about J .

We assume a background storage of 2512 bytes (about 10155 bits) – the
body of this paper is devoted to exploring the range of mathematics that
can be performed in this explicitly finite realm. Our goal is to collect all
real numbers accessible to present and future computers in J , but there are
serious difficulties, both philosophical and technical, in developing a the-
ory that takes the stance that numbers not computable with a computer
with limited (albeit large) amount of storage are indeed out of reach. On
the philosophical side, it is very hard to answer the charge of arbitrariness:
what if we used the number of elementary logical operations, wouldn’t we
obtain a somewhat different constant than the limit based on considera-
tions of space? Actually, the two numbers are highly similar (as noted by
Lloyd), but this is more of a statement about our universe than about a
mathematical system: surely, if we can conceive of a system of size X we
can also conceive of a system of size 2X.

To clarify matters, we use a convenient means of rigorously defining and
talking about large numbers, the Ackermann function. As usual, we de-
fine A(n,m) by induction: A(1,m) = 2m,A(n, 1) = 2, A(k + 1, n + 1) =
A(k,A(k+1, n)). Therefore, A(2,m) = 2m and A(3,m) is a tower of stacked
exponentials of m 2s (for brevity, we will denote such towers by E∗(m)). In

1



a lecture Friedman[1] proposed A(5, 5) as a “sort of benchmark” for incom-
prehensibly large numbers. Here we will describe why A(4, 4) = E∗(65536)
must already be considered to be outside the arithmetic power of of any
civilization restricted to the material resources of our universe. Note that
our baseline, 2512 = 22

9

, is well below E∗(5).

Let us first consider the product 143 · 157. As any third grade student
can tell you, this is 22451. A student of high school algebra may notice that
143 = 150 − 7, 157 = 150 + 7 so that the formula (a − b)(a + b) = a2 − b2

is applicable, and may take advantage of this and similar facts, such as
1502 = (15 ∗ 10)2 = 225 ∗ 100, to compute the result from 22500 − 49,
without going through the tedious steps of the multiplication algorithm
the third grade student used. Yet at the heart of our understanding of
arithmetic we find the tedious algorithm used by the third grader, rather
than the more sophisticated reasoning used by the high school student, for
the simple reason that the basic algorithm remains usable even in those
case where we find no special properties to help us. In particular, when
the numbers to be multiplied are random, we can only rely on the generic
methods. To be sure, there are better (deeper and more effective) methods
for multiplying too large integers than our third grader is aware of (e.g.
based on the Fast Fourier Transform), but this does not affect the argument
inasmuch as these methods are also generic.

Returning to E∗(65536), we can see many ways we can take advantage
of its special form to answer arithmetic questions about it. We may not be
able to actually divide it by 7 and convert the result to decimal notation,
but we can be absolutely certain that if we did so, the thirty third digit of
the fractional part would be 5. However, there are many simple questions
about this number that we are not in a position to answer. In base 10,
how many digits would it have? The answer is given by the integer part of
E∗(65535) · 0.30102999566398..., but this in not a product we can evaluate
to the required degree of precision. In fact, it is not trivial to determine
what its first 10 digits are. There may be some clever algorithm to compute
this, but the standard methods break down.

Notice that we do not have the same problem with E∗(5) = 265536: we
can compute with quite ordinary resources that it would have 19728 decimal
digits. For E∗(6) this is a bit more complicated, we would have to compute
the base 10 log of 2 to nearly 20k digits, compute E∗(5), and multiply
the two. Using fast multiplication, this is still well within the resources of
an ordinary PC: the results would run to ten printed pages (assuming 2k
characters per page). But for E∗(7), we would have to calculate log(2) to
1019728 decimal places, and this is well beyond the material resources of
the universe. By the 7th iteration we are already in trouble, and we would
have to do 65536 iterations to get to A(4, 4).

2



To summarize, it is not the raw size, but rather the information content
of a number that determines its accessibility. The key issue here is random-
ness: powers of 2, towers of such powers, and in general the values of the
Ackermann function, are far from random, both in the technical sense of
Kolmogorov complexity, and in the more physical sense of randomness that
we will first rely on. Some numbers x are more accessible to our arithmetic
than other numbers y in the sense that we can establish certain arithmetic
statements D(x) but not D(y). It follows from a cardinality argument that
we must have many numbers z about which nothing but trivial arithmetic
facts, such as 0 · z = 0 can be established. The standard mathematical
tools of investigating complexity lack the required resolving power: even
the lowest Turing degree lumps together problems which are solvable, such
as finding the number of digits in E∗(6), and problems which are not, such
as finding the number of digits in E∗(7). Since we are expressly includ-
ing symbolic techniques, we need a setup devoted to the manipulation of
strings, trees, and more complex structures of symbols. Once such a setup
is defined, there is a finite number of states S it can have, and any fixed
interpretation of the states can only have a finite set J(S) ⊂ R as its image.

2 Defining J by machines

By pointing her browser to http://www.fourmilab.com/hotbits the user
can download about 240 randomly generated bits per second. Whether
these bits, generated by comparing the length of consecutive intervals be-
tween ticks of a Geiger counter, are truly random, is of course a deep
philosophical question, but one that we need not address here. For our
purposes, it is sufficient to note that in order to replicate or predict these
bits one would need the resources to simulate our whole universe, and such
resources can not be found within the universe itself. For the mathemati-
cian, a simple cardinality argument shows the existence of truly random
(incompressible) bit sequences, but for the more practical-minded reader,
the hotbits setup provides a constructive method, complete with hardware
description and wiring diagrams, for obtaining incompressible sequences.

If we impose an explicit memory limitation, Turing machines and fi-
nite transducers would become equally good computational models, but
we need not take either of these as basic. Our model of computation (see
http://www.kornai.com/Drafts/fathom.html) takes the radical step of
incorporating the full set of the reals, R, in the machine model itself. This
means that J itself can only be approximated by real hardware built from
finitely many elements, but this is not a serious problem inasmuch as our
goal with J-machines is to provide an upper bound on the set J by an

3



abstract model of computation rather than to actually compute things. By
adding the reals we accomplish two main goals: enable direct modeling
of deterministic physical theories (Montague[3]), and make it possible to
deploy Blum-Shub-Smale complexity theory to analyze the symbolic (as
opposed to numeric) techniques available on the machine.

In all other respects our computing model is a straightforward extrap-
olation of what is happening in any modern computer – here we confine
ourselves to a few remarks about memory. To simplify matters, we assume
that a cache of 232 bytes (4 gigabytes) is available on chip (currently un-
realistic, but easy enough to simulate). We can think of this cache as the
innermost (0th) layer of memory, composed of registers, whose contents
are directly accessible (in a single cycle) to primitive operations such as
addition. At the next (1st) layer, we assume that 264 bytes (16 exabytes)
memory is directly addressable – this will be called the core. To perform
(arithmetic or logical) operations on numbers stored in the core requires a
few CPU cycles for bringing them to the 0th layer, and some care in pro-
gramming to make sure still valuable parts of the cache are not overwritten.

Finally there is an outer (2nd) layer of memory in the 2512 byte range,
called the disk. Since this requires the whole universe, we do not follow
the usual assumption that fetching data from this layer can be done in a
constant number of cycles. Rather, we assume that this is limited by the
speed of light, so that if memory is arranged linearly, the time required
for reading or writing the nth byte is proportional to n. If memory is
arranged in concentric circles, the time required is proportional to n1/2,
if it is arranged spherically, to n1/3, which is the best we can do. These
non-random access characteristics call for a whole set of unusual memory
management techniques.

First, we wish to be able to seed far parts of the disk with colonies of
computing agents, who will use certain parts (local to them, but not to us)
as core and cache. Second, we need to make sure that different colonies,
who may themselves be engaged in their own secondary or n-th generational
colonization efforts, recognize different parts of the disk as being already
in use, and don’t step on it. Third, we can not simply assume a generally
shared system of coordinates, or a master plan that each colony will abide
by, for the simple reason that a system the size of the disk can not be kept
noise-free. Therefore, allocating a large segment will actually consume some
overhead space to mark the segment as being in active use, and possibly
some constant drain on time as well, for running a process that defends the
segment from corruption by other processes. Finally, note that at this level
of abstraction we do not need to consider parallelism, since all computers
under the control of our civilization can be thought of as being part of the
same large J-machine.

4



The points on the real line which are directly accessible to this kind of
computing apparatus are collected in the set J512. More crude approxima-
tions of the set J are provided by J0 (no external memory) to J511, and
finer approximations Jn for n > 512 are also logically conceivable. In the
limit we would obtain all the Turing-computable numbers, but the key issue
is understanding the fractal properties of the sets leading to the limit. It
is important to keep in mind that many numbers such as 4.5558062... that
are not directly accessible, may still be symbolically accessible, in this case
as π+

√
2. It is this kind of symbolic accessibility which makes it necessary

to incorporate the full set of the reals in J as part of its hardware: as a
benign side effect, we no longer have to worry about countable models.

What we are interested in is the set J of explicitly computable numbers,
which is already approximated from above by J512. Clearly, any rational
whose numerator and denominator are both sufficiently small (e.g. less
than 512 bits) will be included in J , but rationals requiring a large amount
of storage, e.g. a random integer composed of 2512 digits, are outside J .
The same is true for irrationals: those with a sufficiently compact definition
(e.g. as a root of a small polynomial with small coefficients, or the limit
of a simple power series) are included, but those with large definitional
complexity are excluded. Although the numbers in J are not all rationals,
the situation is in many respects analogous to that found in floating point
hardware, to which we turn now.

In IEEE-754 each number requires 8 bytes: a sign bit s, 52 bits for
mantissa M , and 11 bits for the base 2 exponent e. Triples (s,m, e) are
mapped into reals by the following interpretation function: i(0, 0, 0) =
0; i(1,m, e) = −i(0,m, e); i(0,m, e) = 1.m · 2e−1023(0 < e < 2047). Let
us collect the numbers that can be represented in this format in the set
I: the largest member of I is 21024 − 2972. For any real number x with
smaller absolute value we define Up(x) as the smallest number in I above
x, Down(X) as the largest number in I below it, and Near(x) as Up(x) or
Down(x) depending on which is closer to x. Let ◦ be one of +,−, ·, and /,
RoundingMode be one of Up, Down, or Near, and a, b ∈ I.

A chip satisfies the IEEE-754 standard if (i) whenever a ◦ b ∈ I the com-
putation returns this exact value, (ii) when (a ◦ b 6∈ I but lies between the
smallest and the largest representable number, the chip returns the number
appropriate for the pre-set RoundingMode, and (iii) when the result would
fall outside the representable range the chip signals the overflow just as it
signals division by zero. (We could require separate signals for underflow
to zero, but it is easy to see that if overflow signals are guaranteed we can
always structure the computation so as to avoid silent underflow.) The exis-
tence of different rounding modes enables the chip to perform semantically
correct interval analysis: for example in interval addition we select Down

5



when we compute the left, and Up when we compute the right end of the
result interval, thereby guaranteeing that the true result is always in the
computed interval. It is not hard to see how I(1, 52, 11) would generalize to
I(1, 112, 15) (quad) or even higher precision. For reasonably small values
of i and j I(1, i, j) approximates J from below. In this context, a megabyte
is still reasonably small – while nobody actually needs hardware support
for I(1, 220, 220) “megaprecision” arithmetic, it is clear that this could be
emulated on ordinary hardware at the cost of moving from gigahertz to
kilohertz speeds.

3 Open problems

To some extent, the set J of numbers computable in this universe is an ob-
ject of curiosity, or even an object of religious awe, the same way as Chaitin’s
ω. However, it is an object that is defined by our universe, rather than by
some arbitrary choice of encoding or enumeration (see Raatikainen[4]), and
as such deserves some attention. In this paper we have provided an up-
per bound J512 and a lower bound I(1,m,m) on J , but left essentially all
important problems about it open.

It is clear that J is symmetrical about the origin, but not closed under
addition, reciprocal, or multiplication. Functions from J to itself are not
necessarily computable, not even linear functions with small coefficients.
Elementary statements about “true” addition and “rounded” addition are
indistinguishable within the resolution offered by J , so real numbers do not
have a unique description in a form j + r, where j ∈ J and r is some small
remainder term, as was the case in I(1, i, j).

J gives rise to a new form of the Berry paradox: what is the first integer
that is excluded from it? Clearly, J was defined by a finite method, and
the definition required much less than 2512 symbols, so aren’t we defining
the undefinable here? The correct response seems to be that there is such
a number in N , but we would need resources greater than what we can
actually muster to compute it. Some science-fictional power, with a great
deal more computing muscle, can compute it.

Is there a limit above which J has no members? This is to some extent
the mirror image of the Berry paradox, but the answer is less clear-cut:
a lot depends on the details of the notation we adopt for large numbers.
What is clear from the definition is that random numbers above 2512 are
excluded, but large numbers like A(4, 4) will only be excluded if we strictly
identify knowing a number with being able to compute all its digits (which
is, of course, the only viable definition at the moment).

Since J has a fractal-like structure, perhaps the first order of business

6



would be to establish its dimension: we leave the reader with this challeng-
ing open problem.

Acknowledgments

The author gratefully acknowledges the help of Tibor Beke (University of
Michigan, Ann Arbor), Bruno Caprile (ITC/IRST), Péter Gács (Boston
University), Rick McGowan (Unicode Consortium), Doug Merritt (ex-
UCB), Gábor Tóth (Loránd Eötvös University, Budapest) and Tom Toffoli
(Boston University) in helping him formulating some of the ideas in this
paper.

References

[1] Friedman, Harvey, “Enormous integers in real life,” 1999,
www.math.ohio-state.edu/foundationslct/EnormousInt.12pt.6 1 00.doc.

[2] Lloyd, Seth, “Computational capacity of the universe,” Phys. Rev. Lett. 88 (2002),
237901.

[3] Montague, Richard, “Deterministic theories,”in Richmond H. Thomason (ed.), For-

mal Philosophy, Yale University Press 1974.

[4] Raatikainen, Panu, “On interpreting Chaitin’s incompleteness theorem,” J. Philos.

Logic 27 (1998), 569–586.

7


